ترغب بنشر مسار تعليمي؟ اضغط هنا

CogNet: Bridging Linguistic Knowledge, World Knowledge and Commonsense Knowledge

123   0   0.0 ( 0 )
 نشر من قبل Chenhao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present CogNet, a knowledge base (KB) dedicated to integrating three types of knowledge: (1) linguistic knowledge from FrameNet, which schematically describes situations, objects and events. (2) world knowledge from YAGO, Freebase, DBpedia and Wikidata, which provides explicit knowledge about specific instances. (3) commonsense knowledge from ConceptNet, which describes implicit general facts. To model these different types of knowledge consistently, we introduce a three-level unified frame-styled representation architecture. To integrate free-form commonsense knowledge with other structured knowledge, we propose a strategy that combines automated labeling and crowdsourced annotation. At present, CogNet integrates 1,000+ semantic frames from linguistic KBs, 20,000,000+ frame instances from world KBs, as well as 90,000+ commonsense assertions from commonsense KBs. All these data can be easily queried and explored on our online platform, and free to download in RDF format for utilization under a CC-BY-SA 4.0 license. The demo and data are available at http://cognet.top/.



قيم البحث

اقرأ أيضاً

Commonsense knowledge is crucial for artificial intelligence systems to understand natural language. Previous commonsense knowledge acquisition approaches typically rely on human annotations (for example, ATOMIC) or text generation models (for exampl e, COMET.) Human annotation could provide high-quality commonsense knowledge, yet its high cost often results in relatively small scale and low coverage. On the other hand, generation models have the potential to automatically generate more knowledge. Nonetheless, machine learning models often fit the training data well and thus struggle to generate high-quality novel knowledge. To address the limitations of previous approaches, in this paper, we propose an alternative commonsense knowledge acquisition framework DISCOS (from DIScourse to COmmonSense), which automatically populates expensive complex commonsense knowledge to more affordable linguistic knowledge resources. Experiments demonstrate that we can successfully convert discourse knowledge about eventualities from ASER, a large-scale discourse knowledge graph, into if-then commonsense knowledge defined in ATOMIC without any additional annotation effort. Further study suggests that DISCOS significantly outperforms previous supervised approaches in terms of novelty and diversity with comparable quality. In total, we can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER. Codes and data are available at https://github.com/HKUST-KnowComp/DISCOS-commonsense.
Question: I have five fingers but I am not alive. What am I? Answer: a glove. Answering such a riddle-style question is a challenging cognitive process, in that it requires complex commonsense reasoning abilities, an understanding of figurative langu age, and counterfactual reasoning skills, which are all important abilities for advanced natural language understanding (NLU). However, there are currently no dedicated datasets aiming to test these abilities. Herein, we present RiddleSense, a new multiple-choice question answering task, which comes with the first large dataset (5.7k examples) for answering riddle-style commonsense questions. We systematically evaluate a wide range of models over the challenge, and point out that there is a large gap between the best-supervised model and human performance -- suggesting intriguing future research in the direction of higher-order commonsense reasoning and linguistic creativity towards building advanced NLU systems.
LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation cl assifier and aggregating the scores of entity pairs from a large corpus. Also, we release two benchmark datasets for evaluation and future research.
Commonsense knowledge acquisition is a key problem for artificial intelligence. Conventional methods of acquiring commonsense knowledge generally require laborious and costly human annotations, which are not feasible on a large scale. In this paper, we explore a practical way of mining commonsense knowledge from linguistic graphs, with the goal of transferring cheap knowledge obtained with linguistic patterns into expensive commonsense knowledge. The result is a conversion of ASER [Zhang et al., 2020], a large-scale selectional preference knowledge resource, into TransOMCS, of the same representation as ConceptNet [Liu and Singh, 2004] but two orders of magnitude larger. Experimental results demonstrate the transferability of linguistic knowledge to commonsense knowledge and the effectiveness of the proposed approach in terms of quantity, novelty, and quality. TransOMCS is publicly available at: https://github.com/HKUST-KnowComp/TransOMCS.
A hyperbole is an intentional and creative exaggeration not to be taken literally. Despite its ubiquity in daily life, the computational explorations of hyperboles are scarce. In this paper, we tackle the under-explored and challenging task: sentence -level hyperbole generation. We start with a representative syntactic pattern for intensification and systematically study the semantic (commonsense and counterfactual) relationships between each component in such hyperboles. Next, we leverage the COMeT and reverse COMeT models to do commonsense and counterfactual inference. We then generate multiple hyperbole candidates based on our findings from the pattern, and train neural classifiers to rank and select high-quality hyperboles. Automatic and human evaluations show that our generation method is able to generate hyperboles creatively with high success rate and intensity scores.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا