ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically charged supermassive twin stars

56   0   0.0 ( 0 )
 نشر من قبل Victor Goncalves
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assume that ultra dense neutron stars are endowed with a distribution of electric charge and study the twin star solutions and their properties resulting from a first order transition from confined hadronic to deconfined quark phases. Two distinct phenomenological treatments for the phase transition are considered and the values for the maximum gravitational masses of the hadronic and hybrid configurations are estimated for different values of the total electric charge. We demonstrate that stable compact charged twin stars exist, with charged stars being more massive than their neutral counterparts, and that the standard ${2.2}{M_{odot}}$ constraint is surpassed for large values of the electric charge. In particular, our results suggest that the unknown compact object of $approx {2.6}{M_{odot}}$ measured in the GW190814 event might be a charged star.



قيم البحث

اقرأ أيضاً

The study of the general properties and stability of charm stars with a net electric charge is performed within the MIT bag model framework. We consider two different models for the electric charge distribution and demostrate that both imply stellar configurations with larger masses and that satisfy the equilibrium condition. The dynamical stability against radial oscillations is investigated. Our results demonstrate that the eigenfrequencies are modified by the presence of a net electric charge, but the instability, previously demonstrated for the electrically neutral case, is also present in charged charm stars.
We investigate the implications of a hypothetical $2.5,mathrm{M_odot}$ neutron star in regard to the possibility of a strong phase transition to quark matter. We use equations of state (EoS) of varying stiffness provided by a parameterizable relativi stic mean filed model transitioning in a first order phase transition to quark matter with a constant speed of sound. We find a strong connection between the discontinuity in energy density and the maximal mass generated by the EoS. We demonstrate, that high maximal masses cannot be realized for large discontinuities in energy density, which are necessary for visible twin stars, especially for soft EoSs. As a result twin stars and maximal masses of $M_{max}gtrsim2.2,M_odot$ are mutually exclusive.
In this work we study the properties of compact spheres made of a charged perfect fluid with a MIT bag model EoS for quark matter. Considering static spherically symmetric spacetime we derive the hydrostatic equilibrium equations in the recently form ulated four dimensional Einstein-Gauss-Bonnet ($4D$ EGB) gravity theory. In this setting, the modified TOV equations are solved numerically with the aim to investigate the impact of electric charge on the stellar structure. A nice feature of $4D$ EGB theory is that the Gauss-Bonnet term has a non-vanishing contribution to the gravitational dynamics in $4D$ spacetime. We therefore analyse the effects of Gauss-Bonnet coupling constant $alpha$ and the charge fraction $beta$ on the mass-radius ($M-R$) diagram and also the mass-central density $(M-rho_c)$ relation of quark stars. Finally, we conclude that depending on the choice of coupling constant one could have larger mass and radius compared with GR and can also be relevant for more massive compact objects due to the effect of the repulsive Coulomb force.
We explore the possibility of discovering the mirror baryons and electrons of the Mirror Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an atomic disk. We find that by taking advantage of the complementarity of the different experiments, it may be possible to establish not just the multi-component nature of mirror dark matter, but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the masses and charges of the constituents of the mirror sector. By showing that the mass and charge of mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest effect on direct detection signals.
The proposed correspondence between the Hawking-Unruh radiation mechanism in rotating, electrically-charged and electrically-charged-rotating black holes and the hadronization in high-energy physics is assumed. This allows us to determine the well-pr ofound freezeout parameters of the heavy-ion collisions. Furthermore, black holes thermodynamics is found analogical to that of the high-energy collisions. We also introduce a relation expressing the dependence of the angular momentum and the angular velocity deduced from rotating black holes on the chemical potential. The novel phase diagram for rotating, electrically-charged and electrically-charged-rotating black holes are found in an excellent agreement with the phase diagrams drawn for electrically-charged black holes and also with the ones mapped out from the statistical thermal models and the high-energy experiments. Moreover, our estimations for the freezeout conditions $langle Erangle/langle Nrangle$ and $s/T^3$ are in excellent good agreement with the ones determined from the hadronization process, especially at $muleq 0.3$ GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا