ترغب بنشر مسار تعليمي؟ اضغط هنا

Supermassive Neutron Stars Rule Out Twin Stars

53   0   0.0 ( 0 )
 نشر من قبل Jan-Erik Christian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the implications of a hypothetical $2.5,mathrm{M_odot}$ neutron star in regard to the possibility of a strong phase transition to quark matter. We use equations of state (EoS) of varying stiffness provided by a parameterizable relativistic mean filed model transitioning in a first order phase transition to quark matter with a constant speed of sound. We find a strong connection between the discontinuity in energy density and the maximal mass generated by the EoS. We demonstrate, that high maximal masses cannot be realized for large discontinuities in energy density, which are necessary for visible twin stars, especially for soft EoSs. As a result twin stars and maximal masses of $M_{max}gtrsim2.2,M_odot$ are mutually exclusive.



قيم البحث

اقرأ أيضاً

We assume that ultra dense neutron stars are endowed with a distribution of electric charge and study the twin star solutions and their properties resulting from a first order transition from confined hadronic to deconfined quark phases. Two distinct phenomenological treatments for the phase transition are considered and the values for the maximum gravitational masses of the hadronic and hybrid configurations are estimated for different values of the total electric charge. We demonstrate that stable compact charged twin stars exist, with charged stars being more massive than their neutral counterparts, and that the standard ${2.2}{M_{odot}}$ constraint is surpassed for large values of the electric charge. In particular, our results suggest that the unknown compact object of $approx {2.6}{M_{odot}}$ measured in the GW190814 event might be a charged star.
The fundamental nature of dark matter is entirely unknown. A compelling candidate is Twin Higgs mirror matter, invisible hidden-sector cousins of the Standard Model particles and forces. This generically predicts mirror neutron stars, degenerate obje cts made entirely of mirror nuclear matter. We find their structure using realistic equations of state, robustly modified based on first-principle quantum chromodynamic calculations. We predict their detectability with gravitational waves and binary pulsars, suggesting an impressive discovery potential and ability to probe the dark sector.
528 - F. Weber 2011
This paper provides an overview of the possible role of Quantum Chromo Dynamics (QDC) for neutron stars and strange stars. The fundamental degrees of freedom of QCD are quarks, which may exist as unconfined (color superconducting) particles in the co res of neutron stars. There is also the theoretical possibility that a significantly large number of up, down, and strange quarks may settle down in a new state of matter known as strange quark matter, which, by hypothesis, could be more stable than atomic nuclei. In the latter case new classes of self-bound, color superconducting objects, ranging from strange quark nuggets to strange quark stars, should exist. The properties of such objects will be reviewed along with the possible existence of deconfined quarks in neutron stars. Implications for observational astrophysics are pointed out.
The oscillation of neutrons $n$ into mirror neutrons $n$, their mass degenerate partners from dark mirror sector, can have interesting implications for neutron stars: an ordinary neutron star could gradually transform into a mixed star consisting in part of mirror dark matter. Mixed stars can be detectable as twin partners of ordinary neutron stars: namely, there can exist compact stars with the same masses but having different radii. For a given equation of state (identical between the ordinary and mirror components), the mass and radius of a mixed star depend on the proportion between the ordinary and mirror components in its interior which in turn depends on its age. If $50 % - 50%$ proportion between two fractions can be reached asymptotically in time, then the maximum mass of such maximally mixed stars should be $sqrt2$ times smaller than that of ordinary neutron star while the stars exceeding a critical mass value $M^{rm max}_{NS}/sqrt2$ should collapse in black holes after certain time. We evaluate the evolution time and discuss the implications of $n-n$ transition for the pulsar observations as well as for the gravitational waves from the neutron star mergers and associated electromagnetic signals.
In this chapter we will introduce an effective equation of state (EoS) model based on polytropes that serves to study the so called mass twins scenario, where two compact stars have approximately the same mass but (significant for observation) quite different radii. Stellar mass twin configurations are obtained if a strong first-order phase transition occurs in the interior of a compact star. In the mass-radius diagram of compact stars, this will lead to a third branch of gravitationally stable stars with features that are very distinctive from those of white dwarfs and neutron stars. We discuss rotating hybrid star sequences in the slow rotation approximation and in full general relativity and draw conclusions for an upper limit on the maximum mass of nonrotating compact stars that has recently be deduced from the observation of the merger event GW170817.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا