ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Detection of Mirror Matter in Twin Higgs Models

66   0   0.0 ( 0 )
 نشر من قبل David Curtin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the possibility of discovering the mirror baryons and electrons of the Mirror Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an atomic disk. We find that by taking advantage of the complementarity of the different experiments, it may be possible to establish not just the multi-component nature of mirror dark matter, but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the masses and charges of the constituents of the mirror sector. By showing that the mass and charge of mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest effect on direct detection signals.

قيم البحث

اقرأ أيضاً

The correlation between the invisible Higgs branching ratio ($B_h^{rm inv} $) vs. dark matter (DM) direct detection ($sigma_p^{rm SI}$) in Higgs portal DM models is usually presented in the effective field theory (EFT) framework. This is fine for sin glet scalar DM, but not in the singlet fermion DM (SFDM) or vector DM (VDM) models. In this paper, we derive the explicit expressions for this correlation within UV completions of SFDM and VDM models with Higgs portals, and discuss the limitation of the EFT approach. We show that there are at least two additional hidden parameter in $sigma_p^{rm SI}$ in the UV completions: the singlet-like scalar mass $m_2$ and its mixing angle $alpha$ with the SM Higgs boson ($h$). In particular, if the singlet-like scalar is lighter than the SM Higgs boson ($m_2 < m_h cos alpha / sqrt{1 + cos^2 alpha}$), the collider bound becomes weaker than the one based on EFT.
The twin Higgs mechanism is a solution to the little hierarchy problem in which the top partner is neutral under the Standard Model (SM) gauge group. The simplest mirror twin Higgs (MTH) model -- where a $mathbf{Z}_2$ symmetry copies each SM particle -- has too many relativistic degrees of freedom to be consistent with cosmological observations. We demonstrate that MTH models can have an observationally viable cosmology if the twin mass spectrum leads to twin neutrino decoupling before the SM and twin QCD phase transitions. Our solution requires the twin photon to have a mass of $sim 20$ MeV and kinetically mix with the SM photon to mediate entropy transfer from the twin sector to the SM. This twin photon can be robustly discovered or excluded by future experiments. Additionally, the residual twin degrees of freedom present in the early Universe in this scenario would be detectable by future observations of the cosmic microwave background.
In a recent paper, four of the present authors proposed a class of dark matter models where generalized parity symmetry leads to equality of dark matter abundance with baryon asymmetry of the Universe and predicts dark matter mass to be around 5 GeV. In this note we explore how this model can be tested in direct search experiments. In particular, we point out that if the dark matter happens to be the mirror neutron, the direct detection cross section has the unique feature that it increases at low recoil energy unlike the case of conventional WIMPs. It is also interesting to note that the predicted spin-dependent scattering could make significant contribution to the total direct detection rate, especially for light nucleus. With this scenario, one could explain recent DAMA and CoGeNT results.
Direct detection experiments turn to lose sensitivity of searching for a sub-MeV light dark matter candidate due to the threshold of recoil energy. However, such light dark matter particles can be accelerated by energetic cosmic-rays such that they c an be detected with existing detectors. We derive the constraints on the scattering of a boosted light dark matter and electron from the XENON100/1T experiment. We illustrate that the energy dependence of the cross section plays a crucial role in improving both the detection sensitivity and also the complementarity of direct detection and other experiments.
97 - D.G. Cerdeno , A. Cheek , E. Reid 2018
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in general involves up to three nested integrals) with a much faster parametrization in terms of ordinary polynomials of the dark matter mass and couplings, obtained in an initial training phase. In this article, we validate our surrogate model on the multi-dimensional parameter space resulting from the effective field theory description of dark matter interactions with nuclei, including also astrophysical uncertainties in the description of the dark matter halo. As a concrete example, we use this tool to study the complementarity of different targets to discriminate simplified dark matter models. We demonstrate that RAPIDD is fast and accurate, and particularly well-suited to explore a multi-dimensional parameter space, such as the one in effective field theory approach, and scans with a large number of evaluations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا