ﻻ يوجد ملخص باللغة العربية
In order to investigate the scope of uncertainty in projections of GCMs for Tehran province, a multi-model projection composed of 15 models is employed. The projected changes in minimum temperature, maximum temperature, precipitation, and solar radiation under the A1B scenario for Tehran province are investigated for 2011-2030, 2046-2065, and 2080-2099. GCM projections for the study region are downscaled by the LARS-WG5 model. Uncertainty among the projections is evaluated from three perspectives: large-scale climate scenarios downscaled values, and mean decadal changes. 15 GCMs unanimously project an increasing trend in the temperature for the study region. Also, uncertainty in the projections for the summer months is greater than projection uncertainty for other months. The mean absolute surface temperature increase for the three periods is projected to be about 0.8{deg}C, 2.4{deg}C, and 3.8{deg}C in the summers, respectively. The uncertainty of the multi-model projections for precipitation in summer seasons, and the radiation in the springs and falls is higher than other seasons for the study region. Model projections indicate that for the three future periods and relative to their baseline period, springtime precipitation will decrease about 5%, 10%, and 20%, and springtime radiation will increase about 0.5%, 1.5%, and 3%, respectively. The projected mean decadal changes indicate an increase in temperature and radiation and a decrease in precipitation. Furthermore, the performance of the GCMs in simulating the baseline climate by the MOTP method does not indicate any distinct pattern among the GCMs for the study region.
Quantifying the impact of climate change on future air quality is a challenging subject in air quality studies. An ANN model is employed to simulate hourly O3 concentrations. The model is developed based on hourly monitored values of temperature, sol
Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing variation in precipitation can effectively help the water resources decision-makers in water resources management.
Errors in applying regression models and wavelet filters used to analyze geophysical signals are discussed: (1) multidecadal natural oscillations (e.g. the quasi 60-year Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO) and Pa
Multi-model projections in climate studies are performed to quantify uncertainty and improve reliability in climate projections. The challenging issue is that there is no unique way to obtain performance metrics, nor is there any consensus about whic
Changes in the atmospheric composition alter the magnitude and partitioning between the downward propagating solar and atmospheric longwave radiative fluxes heating the Earths surface. These changes are computed by radiative transfer codes in Global