ﻻ يوجد ملخص باللغة العربية
Changes in the atmospheric composition alter the magnitude and partitioning between the downward propagating solar and atmospheric longwave radiative fluxes heating the Earths surface. These changes are computed by radiative transfer codes in Global Climate Models, and measured with high precision at surface observation networks. Changes in radiative heating signify changes in the global surface temperature and hydrologic cycle. Here, we develop a conceptual framework using an Energy Balance Model to show that first order changes in the hydrologic cycle are mainly associated with changes in solar radiation, while that in surface temperature are mainly associated with changes in atmospheric longwave radiation. These insights are used to explain a range of phenomena including observed historical trends, biases in climate model output, and the inter-model spread in climate change projections. These results may help identify biases in future generations of climate models.
In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitr
Global lockdowns in response to the COVID-19 pandemic have led to changes in the anthropogenic activities resulting in perceivable air quality improvements. Although several recent studies have analyzed these changes over different regions of the glo
In order to investigate the scope of uncertainty in projections of GCMs for Tehran province, a multi-model projection composed of 15 models is employed. The projected changes in minimum temperature, maximum temperature, precipitation, and solar radia
The gridding of daily accumulated precipitation -- especially extremes -- from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based o
Using Lagrangian methods we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time