ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the Regional Effects of Climate Change on Future Urban Ozone Air Quality in Tehran, Iran

111   0   0.0 ( 0 )
 نشر من قبل Ehsan Mosadegh Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantifying the impact of climate change on future air quality is a challenging subject in air quality studies. An ANN model is employed to simulate hourly O3 concentrations. The model is developed based on hourly monitored values of temperature, solar radiation, nitrogen monoxide, and nitrogen dioxide which are monitored during summers (June, July, and August) of 2009-2012 at urban air quality stations in Tehran, Iran. Climate projections by HadCM3 GCM over the study area, driven by IPCC SRES A1B, A2, and B1 emission scenarios, are downscaled by LARS-WG5 model over the periods of 2015-2039 and 2040-2064. The projections are calculated by assuming that current emissions conditions of O3 precursors remain constant in the future. The employed O3 metrics include the number of days exceeding one-hour (1-hr) (120 ppb) and eight-hour (8-hr) (75 ppb) O3 standards and the number of days exceeding 8-hr Air Quality Index (AQI). The projected increases in solar radiation and decreases in precipitation in future summers along with summertime daily maximum temperature rise of about 1.2 and 3 celsius in the first and second climate periods respectively are some indications of more favorable conditions for O3 formation over the study area in the future. Based on pollution conditions of the violation-free summer of 2012, the summertime exceedance days of 8-hr O3 standard are projected to increase in the future by about 4.2 days in the short term and about 12.3 days in the mid-term. Similarly, based on pollution conditions of the polluted summer of 2010 with 58 O3 exceedance days, this metric is projected to increase about 4.5 days in the short term and about 14.1 days in the mid-term. Moreover, the number of Unhealthy and Very Unhealthy days in 8-hr AQI is also projected to increase based on pollution conditions of both summers.



قيم البحث

اقرأ أيضاً

The Centre for Climate Change Research (CCCR;http://cccr.tropmet.res.in) at the Indian Institute of Tropical Meteorology (IITM; http://www.tropmet.res.in), Pune, launched in 2009 with the support of the Ministry of Earth Sciences (MoES), Government o f India, focuses on the development of new climate modelling capabilities in India and South Asia to address issues concerning the science of climate change. CCCR-IITM has the mandate of developing an Earth System Model and to make the regional climate projections. An important achievement was made by developing an Earth System Model at IITM, which is an important step towards understanding global and regional climate response to long-term climate variability and climate change. CCCR-IITM has also generated an ensemble of high resolution dynamically downscaled future projections of regional climate over South Asia and Indian monsoon, which are found useful for impact assessment studies and for quantifying uncertainties in the regional projections. A brief overview of these core climate change modeling activities of CCCR-IITM was presented in an Interim Report on Climate Change over India (available at http://cccr.tropmet.res.in/home/reports.jsp)
In order to investigate the scope of uncertainty in projections of GCMs for Tehran province, a multi-model projection composed of 15 models is employed. The projected changes in minimum temperature, maximum temperature, precipitation, and solar radia tion under the A1B scenario for Tehran province are investigated for 2011-2030, 2046-2065, and 2080-2099. GCM projections for the study region are downscaled by the LARS-WG5 model. Uncertainty among the projections is evaluated from three perspectives: large-scale climate scenarios downscaled values, and mean decadal changes. 15 GCMs unanimously project an increasing trend in the temperature for the study region. Also, uncertainty in the projections for the summer months is greater than projection uncertainty for other months. The mean absolute surface temperature increase for the three periods is projected to be about 0.8{deg}C, 2.4{deg}C, and 3.8{deg}C in the summers, respectively. The uncertainty of the multi-model projections for precipitation in summer seasons, and the radiation in the springs and falls is higher than other seasons for the study region. Model projections indicate that for the three future periods and relative to their baseline period, springtime precipitation will decrease about 5%, 10%, and 20%, and springtime radiation will increase about 0.5%, 1.5%, and 3%, respectively. The projected mean decadal changes indicate an increase in temperature and radiation and a decrease in precipitation. Furthermore, the performance of the GCMs in simulating the baseline climate by the MOTP method does not indicate any distinct pattern among the GCMs for the study region.
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to variou s reports (e.g., INCCA 2010; NATCOMM2 2012), it is important to have an ensemble of climate projections drawn from multiple RCMs due to large uncertainties in regional-scale climate projections. Ensembles of multi-RCM projections driven under different perceivable socio-economic scenarios are required to capture the probable path of growth, and provide the behavior of future climate and impacts on various biophysical systems and economic sectors dependent on such systems. The Centre for Climate Change Research, Indian Institute of Tropical Meteorology (CCCR-IITM) has generated an ensemble of high resolution downscaled projections of regional climate and monsoon over South Asia until 2100 for the Intergovernmental Panel for Climate Change (IPCC)using a RCM (ICTP-RegCM4) at 50 km horizontal resolution, by driving the regional model with lateral and lower boundary conditions from multiple global atmosphere-ocean coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The future projections are based on three Representation Concentration Pathway (RCP) scenarios (viz., RCP2.6, RCP4.5, RCP8.5) of the IPCC.
Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Ni~no-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Also, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100%. However, the seasonal precipitation may increase more than 100% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.
Flood-related risks to people and property are expected to increase in the future due to environmental and demographic changes. It is important to quantify and effectively communicate flood hazards and exposure to inform the design and implementation of flood risk management strategies. Here we develop an integrated modeling framework to assess projected changes in regional riverine flood inundation risks. The framework samples climate model outputs to force a hydrologic model and generate streamflow projections. Together with a statistical and hydraulic model, we use the projected streamflow to map the uncertainty of flood inundation projections for extreme flood events. We implement the framework for rivers across the state of Pennsylvania, United States. Our projections suggest that flood hazards and exposure across Pennsylvania are overall increasing with future climate change. Specific regions, including the main stem Susquehanna River, lower portion of the Allegheny basin and central portion of Delaware River basin, demonstrate higher flood inundation risks. In our analysis, the climate uncertainty dominates the overall uncertainty surrounding the flood inundation projection chain. The combined hydrologic and hydraulic uncertainties can account for as much as 37% of the total uncertainty. We discuss how this framework can provide regional and dynamic flood-risk assessments and help to inform the design of risk-management strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا