ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure and magnetic properties of higher-order layered nickelates: La$_{n+1}$Ni$_{n}$O$_{2n+2}$ ($n=4-6$)

65   0   0.0 ( 0 )
 نشر من قبل Harrison LaBollita
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery of superconductivity in Sr-doped NdNiO$_2$, with a critical temperature of $10-15$ K suggests the possibility of a new family of nickel-based high-temperature superconductors (HTS). NdNiO$_{2}$ is the $n=infty$ member of a larger series of layered nickelates with chemical formula R$_{n+1}$Ni$_{n}$O$_{2n+2}$ (R $=$ La, Nd, Pr; $n = 2, 3, dots, infty$). The $n=3$ member has been experimentally and theoretically shown to be cuprate-like and a promising HTS candidate if electron doping could be achieved. The higher-order $n=4,5,$ and $6$ members of the series fall directly into the cuprate dome area of filling without the need of doping, thus making them promising materials to study, but have not been synthesized yet. Here, we perform first-principles calculations on hypothetical $n=4,5,$ and $6$ structures to study their electronic and magnetic properties and compare them with the known $n=infty$ and $n=3$ materials. From our calculations, we find that the cuprate-like character of layered nickelates increases from the $n=infty$ to the $n=3$ members as the charge transfer energy and the self-doping effect due to R-$d$ bands around the Fermi level gradually decrease.



قيم البحث

اقرأ أيضاً

A series of Ruddlesden-Popper nickelates, Nd$_{n+1}$Ni$_{n}$O$_{3n+1}$ (${n}$ = 1-5), have been stabilized in thin film form using reactive molecular-beam epitaxy. High crystalline quality has been verified by X-ray diffraction and scanning transmiss ion electron microscopy. X-ray photoelectron spectroscopy indicates the ${n}$-dependent valence states of nickel in these compounds. Metal-insulator transitions show clear ${n}$ dependence for intermediate members (${n}$ = 3-5), and the low-temperature resistivities of which show logarithmic dependence, resembling the Kondo-scattering as observed in the parent compounds of superconducting infinite-layer nickelates.
Ab initio calculations have been performed to unravel the origin of the recently found superlattice peaks in the trilayer nickelate La$_4$Ni$_3$O$_8$. These peaks arise from static charge ordering of Ni$^{2+}$/ Ni$^{1+}$ stripes oriented at 45$^{circ }$ to the Ni-O bonds. An insulating state originates from a combination of structural distortions and magnetic order, with the gap being formed solely within the d$_{x^2-y^2}$ manifold of states. When doped, electrons or holes would go into these states, in a similar fashion to what occurs in the cuprates. Analogous calculations suggest that checkerboard charge order should occur in the bilayer nickelate La$_3$Ni$_2$O$_6$. These results reveal a close connection between La$_4$Ni$_3$O$_8$ and La$_3$Ni$_2$O$_6$ with La$_{2-x}$Sr$_x$NiO$_4$ for x=1/3 and x=1/2, respectively.
184 - D. R. Bowler , T. Miyazaki 2011
Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, wh ich rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.
Single crystals of iridates are usually grown by a flux method well above the boiling point of the SrCl2 solvent. This leads to non-equilibrium growth conditions and dramatically shortens the lifetime of expensive Pt crucibles. Here, we report the gr owth of Sr2IrO4, Sr3Ir2O7 and SrIrO3 single crystals in a reproducible way by using anhydrous SrCl2 flux well below its boiling point. We show that the yield of the different phases strongly depends on the nutrient/solvent ratio for fixed soak temperature and cooling rate. Using this low-temperature growth approach generally leads to a lower temperature-independent contribution to the magnetic susceptibility than previously reported. Crystals of SrIrO3 exhibit a paramagnetic behavior that can be remarkably well fitted with a Curie-Weiss law yielding physically reasonable parameters, in contrast to previous reports. Hence, reducing the soak temperature below the solvent boiling point not only provides more stable and controllable growth conditions in contrast to previously reported growth protocols, but also extends considerably the lifetime of expensive platinum crucibles and reduces the corrosion of heating and thermoelements of standard furnaces, thereby reducing growth costs.
In a recent work, new two-dimensional materials, the monolayer MoSi$_{2}$N$_{4}$ and WSi$_{2}$N$_{4}$, have been successfully synthesized in experiment, and several other monolayer materials with the similar structure, such as MoSi$_{2}$As$_{4}$, hav e been predicted [{color{blue}Science 369, 670-674 (2020)}]. Here, based on first-principles calculations and theoretical analysis, we investigate the electronic and optical properties of monolayer MoSi$_{2}$N$_{4}$, WSi$_{2}$N$_{4}$ and MoSi$_{2}$As$_{4}$. We show that these materials are semiconductors, with a pair of Dirac-type valleys located at the corners of the hexagonal Brillouin zone. Due to the broken inversion symmetry and the effect of spin-orbit coupling, the valley fermions manifest spin-valley coupling, valley-contrasting Berry curvature, and valley-selective optical circular dichroism. We also construct the low-energy effective model for the valleys, calculate the spin Hall conductivity and the permittivity, and investigate the strain effect on the band structure. Our result reveals interesting valley physics in monolayer MoSi$_{2}$N$_{4}$, WSi$_{2}$N$_{4}$ and MoSi$_{2}$As$_{4}$, suggesting their great potential for valleytronics and spintronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا