ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial growth of Ruddlesden-Popper neodymium nickelates Nd$_{n+1}$Ni$_{n}$O$_{3n+1}$ (${n}$ = 1-5)

95   0   0.0 ( 0 )
 نشر من قبل Wenjie Sun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A series of Ruddlesden-Popper nickelates, Nd$_{n+1}$Ni$_{n}$O$_{3n+1}$ (${n}$ = 1-5), have been stabilized in thin film form using reactive molecular-beam epitaxy. High crystalline quality has been verified by X-ray diffraction and scanning transmission electron microscopy. X-ray photoelectron spectroscopy indicates the ${n}$-dependent valence states of nickel in these compounds. Metal-insulator transitions show clear ${n}$ dependence for intermediate members (${n}$ = 3-5), and the low-temperature resistivities of which show logarithmic dependence, resembling the Kondo-scattering as observed in the parent compounds of superconducting infinite-layer nickelates.



قيم البحث

اقرأ أيضاً

Single crystals of iridates are usually grown by a flux method well above the boiling point of the SrCl2 solvent. This leads to non-equilibrium growth conditions and dramatically shortens the lifetime of expensive Pt crucibles. Here, we report the gr owth of Sr2IrO4, Sr3Ir2O7 and SrIrO3 single crystals in a reproducible way by using anhydrous SrCl2 flux well below its boiling point. We show that the yield of the different phases strongly depends on the nutrient/solvent ratio for fixed soak temperature and cooling rate. Using this low-temperature growth approach generally leads to a lower temperature-independent contribution to the magnetic susceptibility than previously reported. Crystals of SrIrO3 exhibit a paramagnetic behavior that can be remarkably well fitted with a Curie-Weiss law yielding physically reasonable parameters, in contrast to previous reports. Hence, reducing the soak temperature below the solvent boiling point not only provides more stable and controllable growth conditions in contrast to previously reported growth protocols, but also extends considerably the lifetime of expensive platinum crucibles and reduces the corrosion of heating and thermoelements of standard furnaces, thereby reducing growth costs.
The recent discovery of superconductivity in Sr-doped NdNiO$_2$, with a critical temperature of $10-15$ K suggests the possibility of a new family of nickel-based high-temperature superconductors (HTS). NdNiO$_{2}$ is the $n=infty$ member of a larger series of layered nickelates with chemical formula R$_{n+1}$Ni$_{n}$O$_{2n+2}$ (R $=$ La, Nd, Pr; $n = 2, 3, dots, infty$). The $n=3$ member has been experimentally and theoretically shown to be cuprate-like and a promising HTS candidate if electron doping could be achieved. The higher-order $n=4,5,$ and $6$ members of the series fall directly into the cuprate dome area of filling without the need of doping, thus making them promising materials to study, but have not been synthesized yet. Here, we perform first-principles calculations on hypothetical $n=4,5,$ and $6$ structures to study their electronic and magnetic properties and compare them with the known $n=infty$ and $n=3$ materials. From our calculations, we find that the cuprate-like character of layered nickelates increases from the $n=infty$ to the $n=3$ members as the charge transfer energy and the self-doping effect due to R-$d$ bands around the Fermi level gradually decrease.
312 - S. J. Moon , H. Jin , K. W. Kim 2008
We investigated the electronic structures of the 5$d$ Ruddlesden-Popper series Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ ($n$=1, 2, and $infty$) using optical spectroscopy and first-principles calculations. As 5$d$ orbitals are spatially more extended than 3$d$ o r 4$d$ orbitals, it has been widely accepted that correlation effects are minimal in 5$d$ compounds. However, we observed a bandwidth-controlled transition from a Mott insulator to a metal as we increased $n$. In addition, the artificially synthesized perovskite SrIrO$_{3}$ showed a very large mass enhancement of about 6, indicating that it was in a correlated metallic state.
We propose MnBi$_{2n}$Te$_{3n+1}$ as a magnetically tunable platform for realizing various symmetry-protected higher-order topology. Its canted antiferromagnetic phase can host exotic topological surface states with a Mobius twist that are protected by nonsymmorphic symmetry. Moreover, opposite surfaces hosting Mobius fermions are connected by one-dimensional chiral hinge modes, which offers the first material candidate of a higher-order topological Mobius insulator. We uncover a general mechanism to feasibly induce this exotic physics by applying a small in-plane magnetic field to the antiferromagnetic topological insulating phase of MnBi$_{2n}$Te$_{3n+1}$, as well as other proposed axion insulators. For other magnetic configurations, two classes of inversion-protected higher-order topological phases are ubiquitous in this system, which both manifest gapped surfaces and gapless chiral hinge modes. We systematically discuss their classification, microscopic mechanisms, and experimental signatures. Remarkably, the magnetic-field-induced transition between distinct chiral hinge mode configurations provides an effective topological magnetic switch.
The O(N) model in 1+1 dimensions presents some features in common with Yang-Mills theories: asymptotic freedom, trace anomaly, non-petrurbative generation of a mass gap. An analytical approach to determine the termodynamical properties of the O(3) mo del is presented and compared to lattice results. Here the focus is on the pressure: it is shown how to derive the pressure in the CJT formalism at the one-loop level by making use of the auxiliary field method. Then, the pressure is compared to lattice results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا