ﻻ يوجد ملخص باللغة العربية
In a ride-hailing system, an optimal relocation of vacant vehicles can significantly reduce fleet idling time and balance the supply-demand distribution, enhancing system efficiency and promoting driver satisfaction and retention. Model-free deep reinforcement learning (DRL) has been shown to dynamically learn the relocating policy by actively interacting with the intrinsic dynamics in large-scale ride-hailing systems. However, the issues of sparse reward signals and unbalanced demand and supply distribution place critical barriers in developing effective DRL models. Conventional exploration strategy (e.g., the $epsilon$-greedy) may barely work under such an environment because of dithering in low-demand regions distant from high-revenue regions. This study proposes the deep relocating option policy (DROP) that supervises vehicle agents to escape from oversupply areas and effectively relocate to potentially underserved areas. We propose to learn the Laplacian embedding of a time-expanded relocation graph, as an approximation representation of the system relocation policy. The embedding generates task-agnostic signals, which in combination with task-dependent signals, constitute the pseudo-reward function for generating DROPs. We present a hierarchical learning framework that trains a high-level relocation policy and a set of low-level DROPs. The effectiveness of our approach is demonstrated using a custom-built high-fidelity simulator with real-world trip record data. We report that DROP significantly improves baseline models with 15.7% more hourly revenue and can effectively resolve the dithering issue in low-demand areas.
How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint d
Order dispatching and driver repositioning (also known as fleet management) in the face of spatially and temporally varying supply and demand are central to a ride-sharing platform marketplace. Hand-crafting heuristic solutions that account for the d
Urban ride-hailing demand prediction is a crucial but challenging task for intelligent transportation system construction. Predictable ride-hailing demand can facilitate more reasonable vehicle scheduling and online car-hailing platform dispatch. Con
Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is c
Modeling agent behavior is central to understanding the emergence of complex phenomena in multiagent systems. Prior work in agent modeling has largely been task-specific and driven by hand-engineering domain-specific prior knowledge. We propose a gen