ﻻ يوجد ملخص باللغة العربية
Urban ride-hailing demand prediction is a crucial but challenging task for intelligent transportation system construction. Predictable ride-hailing demand can facilitate more reasonable vehicle scheduling and online car-hailing platform dispatch. Conventional deep learning methods with no external structured data can be accomplished via hybrid models of CNNs and RNNs by meshing plentiful pixel-level labeled data, but spatial data sparsity and limited learning capabilities on temporal long-term dependencies are still two striking bottlenecks. To address these limitations, we propose a new virtual graph modeling method to focus on significant demand regions and a novel Deep Multi-View Spatiotemporal Virtual Graph Neural Network (DMVST-VGNN) to strengthen learning capabilities of spatial dynamics and temporal long-term dependencies. Specifically, DMVST-VGNN integrates the structures of 1D Convolutional Neural Network, Multi Graph Attention Neural Network and Transformer layer, which correspond to short-term temporal dynamics view, spatial dynamics view and long-term temporal dynamics view respectively. In this paper, experiments are conducted on two large-scale New York City datasets in fine-grained prediction scenes. And the experimental results demonstrate effectiveness and superiority of DMVST-VGNN framework in significant citywide ride-hailing demand prediction.
Ride-hailing demand prediction is an essential task in spatial-temporal data mining. Accurate Ride-hailing demand prediction can help to pre-allocate resources, improve vehicle utilization and user experiences. Graph Convolutional Networks (GCN) is c
Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand peoples activity patterns, but al
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding
Multi-view network embedding aims at projecting nodes in the network to low-dimensional vectors, while preserving their multiple relations and attribute information. Contrastive learning-based methods have preliminarily shown promising performance in
Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brev