ترغب بنشر مسار تعليمي؟ اضغط هنا

ACP++: Action Co-occurrence Priors for Human-Object Interaction Detection

209   0   0.0 ( 0 )
 نشر من قبل Dong-Jin Kim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples, resulting in training sets with a long-tailed distribution. The lack of positive labels can lead to low classification accuracy for these classes. Towards addressing this issue, we observe that there exist natural correlations and anti-correlations among human-object interactions. In this paper, we model the correlations as action co-occurrence matrices and present techniques to learn these priors and leverage them for more effective training, especially on rare classes. The efficacy of our approach is demonstrated experimentally, where the performance of our approach consistently improves over the state-of-the-art methods on both of the two leading HOI detection benchmark datasets, HICO-Det and V-COCO.



قيم البحث

اقرأ أيضاً

This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which r ely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP
Human-Object Interaction (HOI) detection is an important problem to understand how humans interact with objects. In this paper, we explore interactiveness knowledge which indicates whether a human and an object interact with each other or not. We fou nd that interactiveness knowledge can be learned across HOI datasets and bridge the gap between diverse HOI category settings. Our core idea is to exploit an interactiveness network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression (NIS) before HOI classification in inference. On account of the generalization ability of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We utilize the human instance and body part features together to learn the interactiveness in hierarchical paradigm, i.e., instance-level and body part-level interactivenesses. Thereafter, a consistency task is proposed to guide the learning and extract deeper interactive visual clues. We extensively evaluate the proposed method on HICO-DET, V-COCO, and a newly constructed PaStaNet-HOI dataset. With the learned interactiveness, our method outperforms state-of-the-art HOI detection methods, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network.
Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found th at interactiveness knowledge can be learned across HOI datasets, regardless of HOI category settings. Our core idea is to exploit an Interactiveness Network to learn the general interactiveness knowledge from multiple HOI datasets and perform Non-Interaction Suppression before HOI classification in inference. On account of the generalization of interactiveness, interactiveness network is a transferable knowledge learner and can be cooperated with any HOI detection models to achieve desirable results. We extensively evaluate the proposed method on HICO-DET and V-COCO datasets. Our framework outperforms state-of-the-art HOI detection results by a great margin, verifying its efficacy and flexibility. Code is available at https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network.
Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction reco gnition. Despite showing progress, these approaches only rely on the appearances of humans and objects and overlook the available context information, crucial for capturing subtle interactions between them. We propose a contextual attention framework for human-object interaction detection. Our approach leverages context by learning contextually-aware appearance features for human and object instances. The proposed attention module then adaptively selects relevant instance-centric context information to highlight image regions likely to contain human-object interactions. Experiments are performed on three benchmarks: V-COCO, HICO-DET and HCVRD. Our approach outperforms the state-of-the-art on all datasets. On the V-COCO dataset, our method achieves a relative gain of 4.4% in terms of role mean average precision ($mAP_{role}$), compared to the existing best approach.
Human-Object Interaction (HOI) detection is a fundamental visual task aiming at localizing and recognizing interactions between humans and objects. Existing works focus on the visual and linguistic features of humans and objects. However, they do not capitalise on the high-level and semantic relationships present in the image, which provides crucial contextual and detailed relational knowledge for HOI inference. We propose a novel method to exploit this information, through the scene graph, for the Human-Object Interaction (SG2HOI) detection task. Our method, SG2HOI, incorporates the SG information in two ways: (1) we embed a scene graph into a global context clue, serving as the scene-specific environmental context; and (2) we build a relation-aware message-passing module to gather relationships from objects neighborhood and transfer them into interactions. Empirical evaluation shows that our SG2HOI method outperforms the state-of-the-art methods on two benchmark HOI datasets: V-COCO and HICO-DET. Code will be available at https://github.com/ht014/SG2HOI.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا