ﻻ يوجد ملخص باللغة العربية
This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which rely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP
Rapid progress has been witnessed for human-object interaction (HOI) recognition, but most existing models are confined to single-stage reasoning pipelines. Considering the intrinsic complexity of the task, we introduce a cascade architecture for a m
Human-Object Interaction (HOI) detection is an important problem to understand how humans interact with objects. In this paper, we explore interactiveness knowledge which indicates whether a human and an object interact with each other or not. We fou
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples, resulting in training sets with a long-tailed distribution. The lack of positive labels can lead to lo
Human-Object Interaction (HOI) Detection is an important problem to understand how humans interact with objects. In this paper, we explore Interactiveness Knowledge which indicates whether human and object interact with each other or not. We found th
Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction reco