ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherence-induced quantum forces

127   0   0.0 ( 0 )
 نشر من قبل Tarek A. Elsayed Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tarek A. Elsayed




اسأل ChatGPT حول البحث

We report on the existence of quantum forces between nearby fragments of correlated matter that result due to the interference effects between the fragments. This effect explains the phenomenon of correlation-assisted tunneling and puts it in a broader context. The magnitude of the reported force depends on the amount of coherence between different locations; it attains a maximum value for fragments in a perfect superfluid state and disappears entirely when the fragments are in the Mott Insulator state. The force can also be explained in terms of the Bohmian quantum potential. We illustrate the implications of this force on the transport of cold atoms through simple potential structures, the triple-well harmonic trap and optical lattices.



قيم البحث

اقرأ أيضاً

Induced coherence in parametric down-conversion between two coherently pumped nonlinear crystals that share a common idler mode can be used as an imaging technique. Based on the interference between the two signal modes of the crystals, an image can be reconstructed. By obtaining an expression for the interference pattern that is valid in both the low- and the high-gain regimes of parametric down-conversion, we show how the coherence of the light emitted by the two crystals can be controlled. With our comprehensive analysis we provide deeper insight into recent discussions about the application of induced coherence to imaging in different regimes. Moreover, we propose a scheme for optimizing the visibility of the interference pattern so that it directly corresponds to the degree of coherence of the light generated in the two crystals. We find that this scheme leads in the high-gain regime to a visibility arbitrarily close to unity.
Recent ab initio lattice studies have found that the interactions between alpha particles (4He nuclei) are sensitive to seemingly minor details of the nucleon-nucleon force such as interaction locality. In order to uncover the essential physics of th is puzzling phenomenon without unnecessary complications, we study a simple model involving two-component fermions in one spatial dimension. We probe the interaction between two bound dimers for several different particle-particle interactions and measure an effective potential between the dimers using external point potentials which act as numerical tweezers. We find that the strength and range of the local part of the particle-particle interactions play a dominant role in shaping the interactions between the dimers and can even determine the overall sign of the effective potential.
121 - A. Vafafard , S. Hughes , 2017
Vacuum induced coherence in a strongly coupled cavity consisting of a three-level system is studied theoretically. The effects of the strong coupling to electromagnetic field vacuum are examined by solution of an open-system quantum master equation. The numerical results show that the system exhibits population trapping, and the numerical results are interpreted with analytical expressions derived from a new basis in the weak excitation regime. We further show that the generated effects can be probed with weak external fields. Moreover, it is shown that the induced coherence can be controlled by the applied field parameters like field detuning. Finally, we study the trapping dynamics in the strong field excitation regime, and also demonstrate that a recently proposed asymmetric pumping regime (limited to the weak coupling regime) can remove the radiative decay of coherent Rabi oscillations, with both weak and strong excitation fields.
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferrom agnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the non-interacting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.
We propose and investigate a pump-probe spectroscopy scheme to unveil the time-resolved dynamics of fermionic or bosonic impurities immersed in a harmonically trapped Bose-Einstein condensate. In this scheme a pump pulse initially transfers the impur ities from a noninteracting to a resonantly interacting spin-state and, after a finite time in which the system evolves freely, the probe pulse reverses this transition. This directly allows to monitor the nonequilibrium dynamics of the impurities as the dynamical formation of coherent attractive or repulsive Bose polarons and signatures of their induced-interactions are imprinted in the probe spectra. We show that for interspecies repulsions exceeding the intraspecies ones a temporal orthogonality catastrophe occurs, followed by enhanced energy redistribution processes, independently of the impuritys flavor. This phenomenon takes place over the characteristic trap timescales. For much longer timescales a steady state is reached characterized by substantial losses of coherence of the impurities. This steady state is related to eigenstate thermalization and it is demonstrated to be independent of the systems characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا