ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum Induced Coherence in Cavity Quantum Electrodynamics

122   0   0.0 ( 0 )
 نشر من قبل Stephen Hughes
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vacuum induced coherence in a strongly coupled cavity consisting of a three-level system is studied theoretically. The effects of the strong coupling to electromagnetic field vacuum are examined by solution of an open-system quantum master equation. The numerical results show that the system exhibits population trapping, and the numerical results are interpreted with analytical expressions derived from a new basis in the weak excitation regime. We further show that the generated effects can be probed with weak external fields. Moreover, it is shown that the induced coherence can be controlled by the applied field parameters like field detuning. Finally, we study the trapping dynamics in the strong field excitation regime, and also demonstrate that a recently proposed asymmetric pumping regime (limited to the weak coupling regime) can remove the radiative decay of coherent Rabi oscillations, with both weak and strong excitation fields.



قيم البحث

اقرأ أيضاً

We study the dynamics of a general multi-emitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squee zing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain condition.
We describe vacuum fluctuations and photon-field correlations in interacting quantum mechanical light-matter systems, by generalizing the application of mixed quantum-classical dynamics techniques. We employ the multi-trajectory implementation of Ehr enfest mean field theory, traditionally developed for electron-nuclear problems, to simulate the spontaneous emission of radiation in a model quantum electrodynamical cavity-bound atomic system. We investigate the performance of this approach in capturing the dynamics of spontaneous emission from the perspective of both the atomic system and the cavity photon field, through a detailed comparison with exact benchmark quantum mechanical observables and correlation functions. By properly accounting for the quantum statistics of the vacuum field, while using mixed quantum-classical (mean field) trajectories to describe the evolution, we identify a surprisingly accurate and promising route towards describing quantum effects in realistic correlated light-matter systems.
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole s with a polymer we calculate the partition function of the coupled light-matter system and demonstrate it exhibits a second order phase transition between a bunched state of isotropic orientations and a stretched one with all the dipoles aligned. Such a transition manifests itself as an intensity-dependent shift of the polariton mode resonance. Our work, lying at the crossroad between cavity quantum electrodynamics and quantum optomechanics, is a step forward in the on-going quest to understand how strong coupling can be exploited to influence matter internal degrees of freedom.
Cavity quantum electrodynamics (CQED) investigates the interaction between light confined in a resonator and particles, such as atoms. In recent years, CQED experiments have reached the optical domain resulting in many interesting applications in the realm of quantum information processing. For many of these application it is necessary to overcome limitations imposed by photon loss. In this context whispering-gallery mode (WGM) resonators have obtained significant interest. Besides their small mode volume and their ultra high quality, they also exhibit favorable polarization properties that give rise to chiral light--matter interaction. In this chapter, we will discuss the origin and the consequences of these chiral features and we review recent achievements in this area.
We propose a quantum metrology scheme in a cavity QED setup to achieve the Heisenberg limit. In our scheme, a series of identical two-level atoms randomly pass through and interact with a dissipative single-mode cavity. Different from the entanglemen t based Heisenberg limit metrology scheme, we do not need to prepare the atomic entangled states before they enter into the cavity. We show that the initial atomic coherence will induce an effective driving to the cavity field, whose steady state is an incoherent superposition of orthogonal states, with the superposition probabilities being dependent on the atom-cavity coupling strength. By measuring the average photon number of the cavity in the steady state, we demonstrate that the root-mean-square of the fluctuation of the atom-cavity coupling strength is proportional to $1/N_c^2$ ($N_c$ is the effective atom number interacting with the photon in the cavity during its lifetime). It implies that we have achieved the Heisenberg limit in our quantum metrology process. We also discuss the experimental feasibility of our theoretical proposal. Our findings may find potential applications in quantum metrology technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا