ﻻ يوجد ملخص باللغة العربية
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferromagnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the non-interacting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.
We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the co
Due to its superior coherent and optical properties at room temperature, the nitrogen-vacancy (N-V ) center in diamond has become a promising quantum probe for nanoscale quantum sensing. However, the application of N-V containing nanodiamonds to quan
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renorm
Modern quantum technologies rely crucially on techniques to mitigate quantum decoherence; these techniques can be either passive, achieved for example via materials engineering, or active, typically achieved via pulsed monochromatic driving fields ap
We use the Gutzwiller Monte Carlo approach to simulate the dissipative XYZ-model in the vicinity of a dissipative phase transition. This approach captures classical spatial correlations together with the full on-site quantum behavior, while neglectin