ﻻ يوجد ملخص باللغة العربية
We propose an approach for fast random number generation based on homemade optical physical unclonable functions (PUFs). The optical PUF is illuminated with input laser wavefront of continuous modulation to obtain different speckle patterns. Random numbers are fully extracted from speckle patterns through a simple post-processing algorithm. Our proof-of-principle experiment achieves total random number generation rate of 0.96 Gbit/s with verified randomness, which is far faster than previous optical-PUF-based schemes. Our results demonstrate that the presented random number generator (RNG) proposal has great potential to achieve ultrafast random number generation rate up to several hundreds of Gbit/s.
Information security is of great importance for modern society with all things connected. Physical unclonable function (PUF) as a promising hardware primitive has been intensively studied for information security. However, the widely investigated sil
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random number gener
We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (AP
The scope of this paper is to demonstrate a fully working and compact photonic Physical Unclonable Function (PUF) device capable of operating in real life scenarios as an authentication mechanism and random number generator. For this purpose, an exte
We propose an approach to realize a quantum random number generator (QRNG) based on the photon number decision of weak laser pulses. This type of QRNG can generate true random numbers at a high speed and can be adjusted to zero bias conveniently, thu