ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum random number generator based on the photon number decision of weak laser pulses

285   0   0.0 ( 0 )
 نشر من قبل Xiang Peng
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an approach to realize a quantum random number generator (QRNG) based on the photon number decision of weak laser pulses. This type of QRNG can generate true random numbers at a high speed and can be adjusted to zero bias conveniently, thus is suitable for the applications in quantum cryptography.



قيم البحث

اقرأ أيضاً

We propose a method for quantum noise extraction from the interference of laser pulses with random phase. Our technique is based on the calculation of a parameter, which we called the quantum reduction factor, and which allows determining the contrib utions of quantum and classical noises in the assumption that classical fluctuations exhibit Gaussian distribution. To the best of our knowledge, the concept of the quantum reduction factor is introduced for the first time. We use such an approach to implement the post-processing-free optical quantum random number generator with the random bit generation rate of 2 Gbps.
We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (AP D) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.
Random numbers are a fundamental resource in science and technology. Among the different approaches to generating them, random numbers created by exploiting the laws of quantum mechanics have proven to be reliable and can be produced at enough rates for their practical use. While these demonstrations have shown very good performance, most of the implementations using free-space and fibre optics, suffer from limitations due to their size, which strongly limits their practical use. Here we report a quantum random number generator based on phase fluctuations from a diode laser, where the other required optical components are integrated on a mm-scale monolithic silicon-on-insulator chip. Our device operates with generation rate in the Gbps regime and the output random numbers pass the NIST statistical tests. Considering the devices size, its simple, robust and low power operation, and the rapid industrial uptake of silicon photonics, we foresee the widespread integration of the reported design in more complex systems.
108 - Xiaomin Guo , Ripeng Liu , Pu Li 2018
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator. At the same time, it directly determine the extraction ratio of true randomness from the raw data, in other words, it affects quantum random numbers generating rate obviously. In this work, considering the effects of classical noise, the best way to enhance quantum entropy in the vacuum-based quantum random number generator is explored in the optimum dynamical analog-digital converter (ADC) range scenario. The influence of classical noise excursion, which may be intrinsic to a system or deliberately induced by an eavesdropper, on the quantum entropy is derived. We propose enhancing local oscillator intensity rather than electrical gain for noise-independent amplification of quadrature fluctuation of vacuum state. Abundant quantum entropy is extractable from the raw data even when classical noise excursion is large. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the local oscillator power when classical noise excursions of the raw data is obvious.
We present a scheme for a self-testing quantum random number generator. Compared to the fully device-independent model, our scheme requires an extra natural assumption, namely that the mean energy per signal is bounded. The scheme is self-testing, as it allows the user to verify in real-time the correct functioning of the setup, hence guaranteeing the continuous generation of certified random bits. Based on a prepare-and-measure setup, our scheme is practical, and we implement it using only off-the-shelf optical components. The randomness generation rate is 1.25 Mbits/s, comparable to commercial solutions. Overall, we believe that this scheme achieves a promising trade-off between the required assumptions, ease-of-implementation and performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا