ترغب بنشر مسار تعليمي؟ اضغط هنا

Cascade of instabilities in the classical limit of the BMN matrix model

72   0   0.0 ( 0 )
 نشر من قبل Georgios Linardopoulos
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the leading (LO) and the next-to-leading order (NLO) stability of multipole perturbations for a static dielectric M2-brane with spherical topology in the 11-dimensional maximally supersymmetric plane-wave background. We observe a cascade of instabilities that originates from the dipole (j=1) and quadrupole (j=2) sectors (the only unstable sectors of the LO) and propagates towards all the multipoles of the NLO.

قيم البحث

اقرأ أيضاً

We investigate the large-N limit of the BMN matrix model by analyzing the dynamics of ellipsoidal M2-branes that spin in the 11-dimensional maximally supersymmetric SO(3)xSO(6) plane-wave background. We identify finite-energy solutions by specifying the local minima of the corresponding energy functional. These configurations are static in SO(3) due to the Myers effect and rotate in SO(6) with an angular momentum that is bounded from above. As a first step towards studying their chaotic properties, we evaluate the Lyapunov exponents of their radial fluctuations.
We explore the stability of a recently found class of spinning dielectric M2-branes in the 11-dimensional maximally supersymmetric plane-wave background. We find two small windows of instabilities in the dipole (j=1) and quadrupole (j = 2) sector of linear multipole perturbations.
In this paper we study a connection between Jackiw-Teitelboim (JT) gravity on two-dimensional anti de-Sitter spaces and a semiclassical limit of $c<1$ two-dimensional string theory. The world-sheet theory of the latter consists of a space-like Liouvi lle CFT coupled to a non-rational CFT defined by a time-like Liouville CFT. We show that their actions, disk partition functions and annulus amplitudes perfectly agree with each other, where the presence of boundary terms plays a crucial role. We also reproduce the boundary Schwarzian theory from the Liouville theory description. Then, we identify a matrix model dual of our two-dimensional string theory with a specific time-dependent background in $c=1$ matrix quantum mechanics. Finally, we also explain the corresponding relation for the two-dimensional de-Sitter JT gravity.
102 - S. S. Gubser , I. R. Klebanov , 2002
A world-sheet sigma model approach is applied to string theories dual to four-dimensional gauge theories, and semi-classical soliton solutions representing highly excited string states are identified which correspond to gauge theory operators with re latively small anomalous dimensions. The simplest class of such states are strings on the leading Regge trajectory, with large spin in AdS_5. These correspond to operators with many covariant derivatives, whose anomalous dimension grows logarithmically with the space-time spin. In the gauge theory, the logarithmic scaling violations are similar to those found in perturbation theory. Other examples of highly excited string states are also considered.
We discuss how the Standard Model particles appear from the type IIB matrix model, which is considered to be a nonperturbative formulation of superstring theory. In particular, we are concerned with a constructive definition of the theory, in which w e start with finite-N matrices and take the large-N limit afterwards. In that case, it was pointed out recently that realizing chiral fermions in the model is more difficult than it had been thought from formal arguments at N=infinity and that introduction of a matrix version of the warp factor is necessary. Based on this new insight, we show that two generations of the Standard Model fermions can be realized by considering a rather generic configuration of fuzzy S^2 and fuzzy S^2 * S^2 in the extra dimensions. We also show that three generations can be obtained by squashing one of the S^2s that appear in the configuration. Chiral fermions appear at the intersections of the fuzzy manifolds with nontrivial Yukawa couplings to the Higgs field, which can be calculated from the overlap of their wave functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا