ﻻ يوجد ملخص باللغة العربية
In this paper we study a connection between Jackiw-Teitelboim (JT) gravity on two-dimensional anti de-Sitter spaces and a semiclassical limit of $c<1$ two-dimensional string theory. The world-sheet theory of the latter consists of a space-like Liouville CFT coupled to a non-rational CFT defined by a time-like Liouville CFT. We show that their actions, disk partition functions and annulus amplitudes perfectly agree with each other, where the presence of boundary terms plays a crucial role. We also reproduce the boundary Schwarzian theory from the Liouville theory description. Then, we identify a matrix model dual of our two-dimensional string theory with a specific time-dependent background in $c=1$ matrix quantum mechanics. Finally, we also explain the corresponding relation for the two-dimensional de-Sitter JT gravity.
The bulk phase shift, related to a CFT four-point function, describes two-to-two scattering at fixed impact parameter in the dual AdS spacetime. We describe its properties for a generic CFT and then focus on large $N$ CFTs with classical bulk duals.
We study the duality between JT gravity and the double-scaled matrix model including their respective deformations. For these deformed theories we relate the thermal partition function to the generating function of topological gravity correlators tha
Recently, Saad, Shenker and Stanford showed how to define the genus expansion of Jackiw-Teitelboim quantum gravity in terms of a double-scaled Hermitian matrix model. However, the models non-perturbative sector has fatal instabilities at low energy t
We study a Jackiw-Teitelboim (JT) supergravity theory, defined as an Euclidean path integral over orientable supermanifolds with constant negative curvature, that was argued by Stanford and Witten to be captured by a random matrix model in the $bolds
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to