ترغب بنشر مسار تعليمي؟ اضغط هنا

Proceedings of KDD 2021 Workshop on Data-driven Humanitarian Mapping: Harnessing Human-Machine Intelligence for High-Stake Public Policy and Resilience Planning

67   0   0.0 ( 0 )
 نشر من قبل Neil S. Gaikwad
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humanitarian challenges, including natural disasters, food insecurity, climate change, racial and gender violence, environmental crises, the COVID-19 coronavirus pandemic, human rights violations, and forced displacements, disproportionately impact vulnerable communities worldwide. According to UN OCHA, 235 million people will require humanitarian assistance in 2021. Despite these growing perils, there remains a notable paucity of data science research to scientifically inform equitable public policy decisions for improving the livelihood of at-risk populations. Scattered data science efforts exist to address these challenges, but they remain isolated from practice and prone to algorithmic harms concerning lack of privacy, fairness, interpretability, accountability, transparency, and ethics. Biases in data-driven methods carry the risk of amplifying inequalities in high-stakes policy decisions that impact the livelihood of millions of people. Consequently, proclaimed benefits of data-driven innovations remain inaccessible to policymakers, practitioners, and marginalized communities at the core of humanitarian actions and global development. To help fill this gap, we propose the Data-driven Humanitarian Mapping Research Program, which focuses on developing novel data science methodologies that harness human-machine intelligence for high-stakes public policy and resilience planning. The proceedings of the 2nd Data-driven Humanitarian Mapping workshop at the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. August 15th, 2021



قيم البحث

اقرأ أيضاً

Humanitarian challenges, including natural disasters, food insecurity, climate change, racial and gender violence, environmental crises, the COVID-19 coronavirus pandemic, human rights violations, and forced displacements, disproportionately impact v ulnerable communities worldwide. According to UN OCHA, 235 million people will require humanitarian assistance in 2021 . Despite these growing perils, there remains a notable paucity of data science research to scientifically inform equitable public policy decisions for improving the livelihood of at-risk populations. Scattered data science efforts exist to address these challenges, but they remain isolated from practice and prone to algorithmic harms concerning lack of privacy, fairness, interpretability, accountability, transparency, and ethics. Biases in data-driven methods carry the risk of amplifying inequalities in high-stakes policy decisions that impact the livelihood of millions of people. Consequently, proclaimed benefits of data-driven innovations remain inaccessible to policymakers, practitioners, and marginalized communities at the core of humanitarian actions and global development. To help fill this gap, we propose the Data-driven Humanitarian Mapping Research Program, which focuses on developing novel data science methodologies that harness human-machine intelligence for high-stakes public policy and resilience planning. The proceedings of the 1st Data-driven Humanitarian Mapping workshop at the 26th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, August 24th, 2020.
This is the proceedings of the 3rd ML4D workshop which was help in Vancouver, Canada on December 13, 2019 as part of the Neural Information Processing Systems conference.
These are the proceedings of the 4th workshop on Machine Learning for the Developing World (ML4D), held as part of the Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS) on Saturday, December 12th 2020.
This is the Proceedings of ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI. Deep neural networks (DNNs) have undoubtedly brought great success to a wide range of applications in computer vision, computat ional linguistics, and AI. However, foundational principles underlying the DNNs success and their resilience to adversarial attacks are still largely missing. Interpreting and theorizing the internal mechanisms of DNNs becomes a compelling yet controversial topic. This workshop pays a special interest in theoretic foundations, limitations, and new application trends in the scope of XAI. These issues reflect new bottlenecks in the future development of XAI.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا