ترغب بنشر مسار تعليمي؟ اضغط هنا

Proceedings of ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI

344   0   0.0 ( 0 )
 نشر من قبل Jie Ren
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the Proceedings of ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI. Deep neural networks (DNNs) have undoubtedly brought great success to a wide range of applications in computer vision, computational linguistics, and AI. However, foundational principles underlying the DNNs success and their resilience to adversarial attacks are still largely missing. Interpreting and theorizing the internal mechanisms of DNNs becomes a compelling yet controversial topic. This workshop pays a special interest in theoretic foundations, limitations, and new application trends in the scope of XAI. These issues reflect new bottlenecks in the future development of XAI.



قيم البحث

اقرأ أيضاً

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, w e conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each groups interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.
Pandemics and natural disasters over the years have changed the behavior of people, which has had a tremendous impact on all life aspects. With the technologies available in each era, governments, organizations, and companies have used these technolo gies to track, control, and influence the behavior of individuals for a benefit. Nowadays, the use of the Internet of Things (IoT), cloud computing, and artificial intelligence (AI) have made it easier to track and change the behavior of users through changing IoT behavior. This article introduces and discusses the concept of the Internet of Behavior (IoB) and its integration with Explainable AI (XAI) techniques to provide trusted and evident experience in the process of changing IoT behavior to ultimately improving users behavior. Therefore, a system based on IoB and XAI has been proposed in a use case scenario of electrical power consumption that aims to influence user consuming behavior to reduce power consumption and cost. The scenario results showed a decrease of 522.2 kW of active power when compared to original consumption over a 200-hours period. It also showed a total power cost saving of 95.04 Euro for the same period. Moreover, decreasing the global active power will reduce the power intensity through the positive correlation.
The aim of this project is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models, preserving at the same time the model interpretability. In particular, the project focuses on applying an explainable machine learning model to bank-related databases. The input data were obtained from open data. Over the total proven models, CatBoost has shown the highest performance. The algorithm implementation produces a GINI of 0.68 after tuning the hyper-parameters. SHAP package is used to provide a global and local interpretation of the model predictions to formulate a human-comprehensive approach to understanding the decision-maker algorithm. The 20 most important features are selected using the Shapley values to present a full human-understandable model that reveals how the attributes of an individual are related to its model prediction.
The 11th Summer Workshop on Multimodal Interfaces eNTERFACE 2015 was hosted by the Numediart Institute of Creative Technologies of the University of Mons from August 10th to September 2015. During the four weeks, students and researchers from all ove r the world came together in the Numediart Institute of the University of Mons to work on eight selected projects structured around intelligent interfaces. Eight projects were selected and their reports are shown here.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا