ﻻ يوجد ملخص باللغة العربية
We study the variable selection problem in survival analysis to identify the most important factors affecting the survival time when the variables have prior knowledge that they have a mutual correlation through a graph structure. We consider the Cox proportional hazard model with a graph-based regularizer for variable selection. A computationally efficient algorithm is developed to solve the graph regularized maximum likelihood problem by connecting to group lasso. We provide theoretical guarantees about the recovery error and asymptotic distribution of the proposed estimators. The good performance and benefit of the proposed approach compared with existing methods are demonstrated in both synthetic and real data examples.
In many biomedical applications, outcome is measured as a ``time-to-event (eg. disease progression or death). To assess the connection between features of a patient and this outcome, it is common to assume a proportional hazards model, and fit a prop
We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variab
In this paper, we prove almost surely consistency of a Survival Analysis model, which puts a Gaussian process, mapped to the unit interval, as a prior on the so-called hazard function. We assume our data is given by survival lifetimes $T$ belonging t
Holland and Leinhardt (1981) proposed a directed random graph model, the p1 model, to describe dyadic interactions in a social network. In previous work (Petrovic et al., 2010), we studied the algebraic properties of the p1 model and showed that it i
In non-convex settings, it is established that the behavior of gradient-based algorithms is different in the vicinity of local structures of the objective function such as strict and non-strict saddle points, local and global minima and maxima. It is