ﻻ يوجد ملخص باللغة العربية
Holland and Leinhardt (1981) proposed a directed random graph model, the p1 model, to describe dyadic interactions in a social network. In previous work (Petrovic et al., 2010), we studied the algebraic properties of the p1 model and showed that it is a toric model specified by a multi-homogeneous ideal. We conducted an extensive study of the Markov bases for p1 that incorporate explicitly the constraint arising from multi-homogeneity. Here we consider the properties of the corresponding toric variety and relate them to the conditions for the existence of the maximum likelihood and extended maximum likelihood estimators or the model parameters. Our results are directly relevant to the estimation and conditional goodness-of-fit testing problems in p1 models.
The edges in networks are not only binary, either present or absent, but also take weighted values in many scenarios (e.g., the number of emails between two users). The covariate-$p_0$ model has been proposed to model binary directed networks with th
This short note is to point the reader to notice that the proof of high dimensional asymptotic normality of MLE estimator for logistic regression under the regime $p_n=o(n)$ given in paper: Maximum likelihood estimation in logistic regression models
We are concerned here with unrestricted maximum likelihood estimation in a sparse $p_0$ model with covariates for directed networks. The model has a density parameter $ u$, a $2n$-dimensional node parameter $bs{eta}$ and a fixed dimensional regressio
In this paper we are interested in the Maximum Likelihood Estimator (MLE) of the vector parameter of an autoregressive process of order $p$ with regular stationary Gaussian noise. We exhibit the large sample asymptotical properties of the MLE under v
We study the problem of estimating the mean of a multivariatedistribution based on independent samples. The main result is the proof of existence of an estimator with a non-asymptotic sub-Gaussian performance for all distributions satisfying some mild moment assumptions.