ترغب بنشر مسار تعليمي؟ اضغط هنا

A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training

187   0   0.0 ( 0 )
 نشر من قبل Kohei Hayashi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthetic-to-real transfer learning is a framework in which we pre-train models with synthetically generated images and ground-truth annotations for real tasks. Although synthetic images overcome the data scarcity issue, it remains unclear how the fine-tuning performance scales with pre-trained models, especially in terms of pre-training data size. In this study, we collect a number of empirical observations and uncover the secret. Through experiments, we observe a simple and general scaling law that consistently describes learning curves in various tasks, models, and complexities of synthesized pre-training data. Further, we develop a theory of transfer learning for a simplified scenario and confirm that the derived generalization bound is consistent with our empirical findings.



قيم البحث

اقرأ أيضاً

Vision and learning have made significant progress that could improve robotics policies for complex tasks and environments. Learning deep neural networks for image understanding, however, requires large amounts of domain-specific visual data. While c ollecting such data from real robots is possible, such an approach limits the scalability as learning policies typically requires thousands of trials. In this work we attempt to learn manipulation policies in simulated environments. Simulators enable scalability and provide access to the underlying world state during training. Policies learned in simulators, however, do not transfer well to real scenes given the domain gap between real and synthetic data. We follow recent work on domain randomization and augment synthetic images with sequences of random transformations. Our main contribution is to optimize the augmentation strategy for sim2real transfer and to enable domain-independent policy learning. We design an efficient search for depth image augmentations using object localization as a proxy task. Given the resulting sequence of random transformations, we use it to augment synthetic depth images during policy learning. Our augmentation strategy is policy-independent and enables policy learning with no real images. We demonstrate our approach to significantly improve accuracy on three manipulation tasks evaluated on a real robot.
Though many attempts have been made in blind super-resolution to restore low-resolution images with unknown and complex degradations, they are still far from addressing general real-world degraded images. In this work, we extend the powerful ESRGAN t o a practical restoration application (namely, Real-ESRGAN), which is trained with pure synthetic data. Specifically, a high-order degradation modeling process is introduced to better simulate complex real-world degradations. We also consider the common ringing and overshoot artifacts in the synthesis process. In addition, we employ a U-Net discriminator with spectral normalization to increase discriminator capability and stabilize the training dynamics. Extensive comparisons have shown its superior visual performance than prior works on various real datasets. We also provide efficient implementations to synthesize training pairs on the fly.
We present a novel solution to the problem of simulation-to-real transfer, which builds on recent advances in robot skill decomposition. Rather than focusing on minimizing the simulation-reality gap, we learn a set of diverse policies that are parame terized in a way that makes them easily reusable. This diversity and parameterization of low-level skills allows us to find a transferable policy that is able to use combinations and variations of different skills to solve more complex, high-level tasks. In particular, we first use simulation to jointly learn a policy for a set of low-level skills, and a skill embedding parameterization which can be used to compose them. Later, we learn high-level policies which actuate the low-level policies via this skill embedding parameterization. The high-level policies encode how and when to reuse the low-level skills together to achieve specific high-level tasks. Importantly, our method learns to control a real robot in joint-space to achieve these high-level tasks with little or no on-robot time, despite the fact that the low-level policies may not be perfectly transferable from simulation to real, and that the low-level skills were not trained on any examples of high-level tasks. We illustrate the principles of our method using informative simulation experiments. We then verify its usefulness for real robotics problems by learning, transferring, and composing free-space and contact motion skills on a Sawyer robot using only joint-space control. We experiment with several techniques for composing pre-learned skills, and find that our method allows us to use both learning-based approaches and efficient search-based planning to achieve high-level tasks using only pre-learned skills.
Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computation cost mainly from cross-modal at tention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by pre-training on three novel learning objectives, extracting feature indexes offline, and employing instant dot-product matching with further re-ranking, which significantly speeds up retrieval process. In fact, LightningDOT achieves new state of the art across multiple ITR benchmarks such as Flickr30k, COCO and Multi30K, outperforming existing pre-trained models that consume 1000x magnitude of computational hours. Code and pre-training checkpoints are available at https://github.com/intersun/LightningDOT.
We introduce a new measure to evaluate the transferability of representations learned by classifiers. Our measure, the Log Expected Empirical Prediction (LEEP), is simple and easy to compute: when given a classifier trained on a source data set, it o nly requires running the target data set through this classifier once. We analyze the properties of LEEP theoretically and demonstrate its effectiveness empirically. Our analysis shows that LEEP can predict the performance and convergence speed of both transfer and meta-transfer learning methods, even for small or imbalanced data. Moreover, LEEP outperforms recently proposed transferability measures such as negative conditional entropy and H scores. Notably, when transferring from ImageNet to CIFAR100, LEEP can achieve up to 30% improvement compared to the best competing method in terms of the correlations with actual transfer accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا