ترغب بنشر مسار تعليمي؟ اضغط هنا

New Q-Newtons method meets Backtracking line search: good convergence guarantee, saddle points avoidance, quadratic rate of convergence, and easy implementation

113   0   0.0 ( 0 )
 نشر من قبل Tuyen Truong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent joint work, the author has developed a modification of Newtons method, named New Q-Newtons method, which can avoid saddle points and has quadratic rate of convergence. While good theoretical convergence guarantee has not been established for this method, experiments on small scale problems show that the method works very competitively against other well known modifications of Newtons method such as Adaptive Cubic Regularization and BFGS, as well as first order methods such as Unbounded Two-way Backtracking Gradient Descent. In this paper, we resolve the convergence guarantee issue by proposing a modification of New Q-Newtons method, named New Q-Newtons method Backtracking, which incorporates a more sophisticated use of hyperparameters and a Backtracking line search. This new method has very good theoretical guarantees, which for a {bf Morse function} yields the following (which is unknown for New Q-Newtons method): {bf Theorem.} Let $f:mathbb{R}^mrightarrow mathbb{R}$ be a Morse function, that is all its critical points have invertible Hessian. Then for a sequence ${x_n}$ constructed by New Q-Newtons method Backtracking from a random initial point $x_0$, we have the following two alternatives: i) $lim_{nrightarrowinfty}||x_n||=infty$, or ii) ${x_n}$ converges to a point $x_{infty}$ which is a {bf local minimum} of $f$, and the rate of convergence is {bf quadratic}. Moreover, if $f$ has compact sublevels, then only case ii) happens. As far as we know, for Morse functions, this is the best theoretical guarantee for iterative optimization algorithms so far in the literature. We have tested in experiments on small scale, with some further simplifie

قيم البحث

اقرأ أيضاً

We propose in this paper New Q-Newtons method. The update rule is very simple conceptually, for example $x_{n+1}=x_n-w_n$ where $w_n=pr_{A_n,+}(v_n)-pr_{A_n,-}(v_n)$, with $A_n= abla ^2f(x_n)+delta _n|| abla f(x_n)||^2.Id$ and $v_n=A_n^{-1}. abla f(x _n)$. Here $delta _n$ is an appropriate real number so that $A_n$ is invertible, and $pr_{A_n,pm}$ are projections to the vector subspaces generated by eigenvectors of positive (correspondingly negative) eigenvalues of $A_n$. The main result of this paper roughly says that if $f$ is $C^3$ (can be unbounded from below) and a sequence ${x_n}$, constructed by the New Q-Newtons method from a random initial point $x_0$, {bf converges}, then the limit point is a critical point and is not a saddle point, and the convergence rate is the same as that of Newtons method. The first author has recently been successful incorporating Backtracking line search to New Q-Newtons method, thus resolving the convergence guarantee issue observed for some (non-smooth) cost functions. An application to quickly finding zeros of a univariate meromorphic function will be discussed. Various experiments are performed, against well known algorithms such as BFGS and Adaptive Cubic Regularization are presented.
It has been widely recognized that the 0/1 loss function is one of the most natural choices for modelling classification errors, and it has a wide range of applications including support vector machines and 1-bit compressed sensing. Due to the combin atorial nature of the 0/1 loss function, methods based on convex relaxations or smoothing approximations have dominated the existing research and are often able to provide approximate solutions of good quality. However, those methods are not optimizing the 0/1 loss function directly and hence no optimality has been established for the original problem. This paper aims to study the optimality conditions of the 0/1 function minimization, and for the first time to develop Newtons method that directly optimizes the 0/1 function with a local quadratic convergence under reasonable conditions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods.ions. Extensive numerical experiments demonstrate its superior performance as one would expect from Newton-type methods.
Nonsmooth optimization problems arising in practice tend to exhibit beneficial smooth substructure: their domains stratify into active manifolds of smooth variation, which common proximal algorithms identify in finite time. Identification then entail s a transition to smooth dynamics, and accommodates second-order acceleration techniques. While identification is clearly useful algorithmically, empirical evidence suggests that even those algorithms that do not identify the active manifold in finite time -- notably the subgradient method -- are nonetheless affected by it. This work seeks to explain this phenomenon, asking: how do active manifolds impact the subgradient method in nonsmooth optimization? In this work, we answer this question by introducing two algorithmically useful properties -- aiming and subgradient approximation -- that fully expose the smooth substructure of the problem. We show that these properties imply that the shadow of the (stochastic) subgradient method along the active manifold is precisely an inexact Riemannian gradient method with an implicit retraction. We prove that these properties hold for a wide class of problems, including cone reducible/decomposable functions and generic semialgebraic problems. Moreover, we develop a thorough calculus, proving such properties are preserved under smooth deformations and spectral lifts. This viewpoint then leads to several algorithmic consequences that parallel results in smooth optimization, despite the nonsmoothness of the problem: local rates of convergence, asymptotic normality, and saddle point avoidance. The asymptotic normality results appear to be new even in the most classical setting of stochastic nonlinear programming. The results culminate in the following observation: the perturbed subgradient method on generic, Clarke regular semialgebraic problems, converges only to local minimizers.
Monotone systems of polynomial equations (MSPEs) are systems of fixed-point equations $X_1 = f_1(X_1, ..., X_n),$ $..., X_n = f_n(X_1, ..., X_n)$ where each $f_i$ is a polynomial with positive real coefficients. The question of computing the least no n-negative solution of a given MSPE $vec X = vec f(vec X)$ arises naturally in the analysis of stochastic models such as stochastic context-free grammars, probabilistic pushdown automata, and back-button processes. Etessami and Yannakakis have recently adapted Newtons iterative method to MSPEs. In a previous paper we have proved the existence of a threshold $k_{vec f}$ for strongly connected MSPEs, such that after $k_{vec f}$ iterations of Newtons method each new iteration computes at least 1 new bit of the solution. However, the proof was purely existential. In this paper we give an upper bound for $k_{vec f}$ as a function of the minimal component of the least fixed-point $muvec f$ of $vec f(vec X)$. Using this result we show that $k_{vec f}$ is at most single exponential resp. linear for strongly connected MSPEs derived from probabilistic pushdown automata resp. from back-button processes. Further, we prove the existence of a threshold for arbitrary MSPEs after which each new iteration computes at least $1/w2^h$ new bits of the solution, where $w$ and $h$ are the width and height of the DAG of strongly connected components.
In this paper, we develop convergence analysis of a modified line search method for objective functions whose value is computed with noise and whose gradient estimates are inexact and possibly random. The noise is assumed to be bounded in absolute va lue without any additional assumptions. We extend the framework based on stochastic methods from [Cartis and Scheinberg, 2018] which was developed to provide analysis of a standard line search method with exact function values and random gradients to the case of noisy functions. We introduce two alternative conditions on the gradient which when satisfied with some sufficiently large probability at each iteration, guarantees convergence properties of the line search method. We derive expected complexity bounds to reach a near optimal neighborhood for convex, strongly convex and nonconvex functions. The exact dependence of the convergence neighborhood on the noise is specified.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا