ﻻ يوجد ملخص باللغة العربية
In this paper, we develop convergence analysis of a modified line search method for objective functions whose value is computed with noise and whose gradient estimates are inexact and possibly random. The noise is assumed to be bounded in absolute value without any additional assumptions. We extend the framework based on stochastic methods from [Cartis and Scheinberg, 2018] which was developed to provide analysis of a standard line search method with exact function values and random gradients to the case of noisy functions. We introduce two alternative conditions on the gradient which when satisfied with some sufficiently large probability at each iteration, guarantees convergence properties of the line search method. We derive expected complexity bounds to reach a near optimal neighborhood for convex, strongly convex and nonconvex functions. The exact dependence of the convergence neighborhood on the noise is specified.
The alternating direction method of multipliers (ADMM) is a popular method for solving convex separable minimization problems with linear equality constraints. The generalization of the two-block ADMM to the three-block ADMM is not trivial since the
In a recent joint work, the author has developed a modification of Newtons method, named New Q-Newtons method, which can avoid saddle points and has quadratic rate of convergence. While good theoretical convergence guarantee has not been established
We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of
We estimate convergence rates for fixed-point iterations of a class of nonlinear operators which are partially motivated from solving convex optimization problems. We introduce the notion of the generalized averaged nonexpansive (GAN) operator with a
Dual decomposition is widely utilized in distributed optimization of multi-agent systems. In practice, the dual decomposition algorithm is desired to admit an asynchronous implementation due to imperfect communication, such as time delay and packet d