ﻻ يوجد ملخص باللغة العربية
Existing approaches to vision-language pre-training (VLP) heavily rely on an object detector based on bounding boxes (regions), where salient objects are first detected from images and then a Transformer-based model is used for cross-modal fusion. Despite their superior performance, these approaches are bounded by the capability of the object detector in terms of both effectiveness and efficiency. Besides, the presence of object detection imposes unnecessary constraints on model designs and makes it difficult to support end-to-end training. In this paper, we revisit grid-based convolutional features for vision-language pre-training, skipping the expensive region-related steps. We propose a simple yet effective grid-based VLP method that works surprisingly well with the grid features. By pre-training only with in-domain datasets, the proposed Grid-VLP method can outperform most competitive region-based VLP methods on three examined vision-language understanding tasks. We hope that our findings help to further advance the state of the art of vision-language pre-training, and provide a new direction towards effective and efficient VLP.
Vision-language pre-training (VLP) on large-scale image-text pairs has achieved huge success for the cross-modal downstream tasks. The most existing pre-training methods mainly adopt a two-step training procedure, which firstly employs a pre-trained
Shouldnt language and vision features be treated equally in vision-language (VL) tasks? Many VL approaches treat the language component as an afterthought, using simple language models that are either built upon fixed word embeddings trained on text-
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextualized multilingual multimodal embeddings. Under a ze
We describe a proposal for an extensible, component-based software architecture for natural language engineering applications. Our model leverages existing linguistic resource description and discovery mechanisms based on extended Dublin Core metadat
Self attention mechanisms have become a key building block in many state-of-the-art language understanding models. In this paper, we show that the self attention operator can be formulated in terms of 1x1 convolution operations. Following this observ