ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-DARTS: Towards Stable Architecture Search

202   0   0.0 ( 0 )
 نشر من قبل Pengfei Hou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Differentiable architecture search (DARTS) marks a milestone in Neural Architecture Search (NAS), boasting simplicity and small search costs. However, DARTS still suffers from frequent performance collapse, which happens when some operations, such as skip connections, zeroes and poolings, dominate the architecture. In this paper, we are the first to point out that the phenomenon is attributed to bi-level optimization. We propose Single-DARTS which merely uses single-level optimization, updating network weights and architecture parameters simultaneously with the same data batch. Even single-level optimization has been previously attempted, no literature provides a systematic explanation on this essential point. Replacing the bi-level optimization, Single-DARTS obviously alleviates performance collapse as well as enhances the stability of architecture search. Experiment results show that Single-DARTS achieves state-of-the-art performance on mainstream search spaces. For instance, on NAS-Benchmark-201, the searched architectures are nearly optimal ones. We also validate that the single-level optimization framework is much more stable than the bi-level one. We hope that this simple yet effective method will give some insights on differential architecture search. The code is available at https://github.com/PencilAndBike/Single-DARTS.git.



قيم البحث

اقرأ أيضاً

Differentiable architecture search (DARTS) provided a fast solution in finding effective network architectures, but suffered from large memory and computing overheads in jointly training a super-network and searching for an optimal architecture. In t his paper, we present a novel approach, namely, Partially-Connected DARTS, by sampling a small part of super-network to reduce the redundancy in exploring the network space, thereby performing a more efficient search without comprising the performance. In particular, we perform operation search in a subset of channels while bypassing the held out part in a shortcut. This strategy may suffer from an undesired inconsistency on selecting the edges of super-net caused by sampling different channels. We alleviate it using edge normalization, which adds a new set of edge-level parameters to reduce uncertainty in search. Thanks to the reduced memory cost, PC-DARTS can be trained with a larger batch size and, consequently, enjoys both faster speed and higher training stability. Experimental results demonstrate the effectiveness of the proposed method. Specifically, we achieve an error rate of 2.57% on CIFAR10 with merely 0.1 GPU-days for architecture search, and a state-of-the-art top-1 error rate of 24.2% on ImageNet (under the mobile setting) using 3.8 GPU-days for search. Our code has been made available at: https://github.com/yuhuixu1993/PC-DARTS.
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL) to search for convolutional cells, applied to the Procgen benchmark. We outline the initial difficulties of applying neu ral architecture search techniques in RL, and demonstrate that by simply replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code. Surprisingly, we find that the supernet can be used as an actor for inference to generate replay data in standard RL training loops, and thus train end-to-end. Throughout this training process, we show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
Differentiable Architecture Search (DARTS) is an effective continuous relaxation-based network architecture search (NAS) method with low search cost. It has attracted significant attentions in Auto-ML research and becomes one of the most useful parad igms in NAS. Although DARTS can produce superior efficiency over traditional NAS approaches with better control of complex parameters, oftentimes it suffers from stabilization issues in producing deteriorating architectures when discretizing the continuous architecture. We observed considerable loss of validity causing dramatic decline in performance at this final discretization step of DARTS. To address this issue, we propose a Mean-Shift based DARTS (MS-DARTS) to improve stability based on sampling and perturbation. Our approach can improve bot the stability and accuracy of DARTS, by smoothing the loss landscape and sampling architecture parameters within a suitable bandwidth. We investigate the convergence of our mean-shift approach, together with the effects of bandwidth selection that affects stability and accuracy. Evaluations performed on CIFAR-10, CIFAR-100, and ImageNet show that MS-DARTS archives higher performance over other state-of-the-art NAS methods with reduced search cost.
111 - Xian Shi , Pan Zhou , Wei Chen 2021
Neural architecture search (NAS) has been successfully applied to tasks like image classification and language modeling for finding efficient high-performance network architectures. In ASR field especially end-to-end ASR, the related research is stil l in its infancy. In this work, we focus on applying NAS on the most popular manually designed model: Conformer, and then propose an efficient ASR model searching method that benefits from the natural advantage of differentiable architecture search (Darts) in reducing computational overheads. We fuse Darts mutator and Conformer blocks to form a complete search space, within which a modified architecture called Darts-Conformer cell is found automatically. The entire searching process on AISHELL-1 dataset costs only 0.7 GPU days. Replacing the Conformer encoder by stacking searched cell, we get an end-to-end ASR model (named as Darts-Conformner) that outperforms the Conformer baseline by 4.7% on the open-source AISHELL-1 dataset. Besides, we verify the transferability of the architecture searched on a small dataset to a larger 2k-hour dataset. To the best of our knowledge, this is the first successful attempt to apply gradient-based architecture search in the attention-based encoder-decoder ASR model.
Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search ( NAS) approaches have shown some tremendous potential. Following the same underlying, in this paper, we suggest a novel trilevel NAS method that provides a better balance between different efficiency metrics and performance to solve SISR. Unlike available NAS, our search is more complete, and therefore it leads to an efficient, optimized, and compressed architecture. We innovatively introduce a trilevel search space modeling, i.e., hierarchical modeling on network-, cell-, and kernel-level structures. To make the search on trilevel spaces differentiable and efficient, we exploit a new sparsestmax technique that is excellent at generating sparse distributions of individual neural architecture candidates so that they can be better disentangled for the final selection from the enlarged search space. We further introduce the sorting technique to the sparsestmax relaxation for better network-level compression. The proposed NAS optimization additionally facilitates simultaneous search and training in a single phase, reducing search time and train time. Comprehensive evaluations on the benchmark datasets show our methods clear superiority over the state-of-the-art NAS in terms of a good trade-off between model size, performance, and efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا