ترغب بنشر مسار تعليمي؟ اضغط هنا

RL-DARTS: Differentiable Architecture Search for Reinforcement Learning

337   0   0.0 ( 0 )
 نشر من قبل Xingyou Song
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL) to search for convolutional cells, applied to the Procgen benchmark. We outline the initial difficulties of applying neural architecture search techniques in RL, and demonstrate that by simply replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code. Surprisingly, we find that the supernet can be used as an actor for inference to generate replay data in standard RL training loops, and thus train end-to-end. Throughout this training process, we show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.



قيم البحث

اقرأ أيضاً

Neural architecture search (NAS) aims to discover network architectures with desired properties such as high accuracy or low latency. Recently, differentiable NAS (DNAS) has demonstrated promising results while maintaining a search cost orders of mag nitude lower than reinforcement learning (RL) based NAS. However, DNAS models can only optimize differentiable loss functions in search, and they require an accurate differentiable approximation of non-differentiable criteria. In this work, we present UNAS, a unified framework for NAS, that encapsulates recent DNAS and RL-based approaches under one framework. Our framework brings the best of both worlds, and it enables us to search for architectures with both differentiable and non-differentiable criteria in one unified framework while maintaining a low search cost. Further, we introduce a new objective function for search based on the generalization gap that prevents the selection of architectures prone to overfitting. We present extensive experiments on the CIFAR-10, CIFAR-100, and ImageNet datasets and we perform search in two fundamentally different search spaces. We show that UNAS obtains the state-of-the-art average accuracy on all three datasets when compared to the architectures searched in the DARTS space. Moreover, we show that UNAS can find an efficient and accurate architecture in the ProxylessNAS search space, that outperforms existing MobileNetV2 based architectures. The source code is available at https://github.com/NVlabs/unas .
Differentiable neural architecture search (DNAS) is known for its capacity in the automatic generation of superior neural networks. However, DNAS based methods suffer from memory usage explosion when the search space expands, which may prevent them f rom running successfully on even advanced GPU platforms. On the other hand, reinforcement learning (RL) based methods, while being memory efficient, are extremely time-consuming. Combining the advantages of both types of methods, this paper presents RADARS, a scalable RL-aided DNAS framework that can explore large search spaces in a fast and memory-efficient manner. RADARS iteratively applies RL to prune undesired architecture candidates and identifies a promising subspace to carry out DNAS. Experiments using a workstation with 12 GB GPU memory show that on CIFAR-10 and ImageNet datasets, RADARS can achieve up to 3.41% higher accuracy with 2.5X search time reduction compared with a state-of-the-art RL-based method, while the two DNAS baselines cannot complete due to excessive memory usage or search time. To the best of the authors knowledge, this is the first DNAS framework that can handle large search spaces with bounded memory usage.
Differentiable Architecture Search (DARTS) is an effective continuous relaxation-based network architecture search (NAS) method with low search cost. It has attracted significant attentions in Auto-ML research and becomes one of the most useful parad igms in NAS. Although DARTS can produce superior efficiency over traditional NAS approaches with better control of complex parameters, oftentimes it suffers from stabilization issues in producing deteriorating architectures when discretizing the continuous architecture. We observed considerable loss of validity causing dramatic decline in performance at this final discretization step of DARTS. To address this issue, we propose a Mean-Shift based DARTS (MS-DARTS) to improve stability based on sampling and perturbation. Our approach can improve bot the stability and accuracy of DARTS, by smoothing the loss landscape and sampling architecture parameters within a suitable bandwidth. We investigate the convergence of our mean-shift approach, together with the effects of bandwidth selection that affects stability and accuracy. Evaluations performed on CIFAR-10, CIFAR-100, and ImageNet show that MS-DARTS archives higher performance over other state-of-the-art NAS methods with reduced search cost.
221 - Xin Chen , Yawen Duan , Zewei Chen 2020
Neural Architecture Search (NAS) achieved many breakthroughs in recent years. In spite of its remarkable progress, many algorithms are restricted to particular search spaces. They also lack efficient mechanisms to reuse knowledge when confronting mul tiple tasks. These challenges preclude their applicability, and motivate our proposal of CATCH, a novel Context-bAsed meTa reinforcement learning (RL) algorithm for transferrable arChitecture searcH. The combination of meta-learning and RL allows CATCH to efficiently adapt to new tasks while being agnostic to search spaces. CATCH utilizes a probabilistic encoder to encode task properties into latent context variables, which then guide CATCHs controller to quickly catch top-performing networks. The contexts also assist a network evaluator in filtering inferior candidates and speed up learning. Extensive experiments demonstrate CATCHs universality and search efficiency over many other widely-recognized algorithms. It is also capable of handling cross-domain architecture search as competitive networks on ImageNet, COCO, and Cityscapes are identified. This is the first work to our knowledge that proposes an efficient transferrable NAS solution while maintaining robustness across various settings.
Recent studies on neural architecture search have shown that automatically designed neural networks perform as good as expert-crafted architectures. While most existing works aim at finding architectures that optimize the prediction accuracy, these a rchitectures may have complexity and is therefore not suitable being deployed on certain computing environment (e.g., with limited power budgets). We propose MONAS, a framework for Multi-Objective Neural Architectural Search that employs reward functions considering both prediction accuracy and other important objectives (e.g., power consumption) when searching for neural network architectures. Experimental results showed that, compared to the state-ofthe-arts, models found by MONAS achieve comparable or better classification accuracy on computer vision applications, while satisfying the additional objectives such as peak power.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا