ترغب بنشر مسار تعليمي؟ اضغط هنا

Applications of entropy of product systems: higher-rank graphs

175   0   0.0 ( 0 )
 نشر من قبل Evgenios Kakariadis T.A.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider C*-algebras of finite higher-rank graphs along with their rotational action. We show how the entropy theory of product systems with finite frames applies to identify the phase transitions of the dynamics. We compute the positive inverse temperatures where symmetry breaks, and in particular we identify the subharmonic parts of the gauge-invariant equilibrium states. Our analysis applies to positively weighted rotational actions through a recalibration of the entropies.

قيم البحث

اقرأ أيضاً

In this monograph we undertake a comprehensive study of separable representations (as well as their unitary equivalence classes) of $C^*$-algebras associated to strongly connected finite $k$-graphs $Lambda$. We begin with the representations associat ed to the $Lambda$-semibranching function systems introduced by Farsi, Gillaspy, Kang, and Packer in cite{FGKP}, by giving an alternative characterization of these systems which is more easily verified in examples. We present a variety of such examples, one of which we use to construct a new faithful separable representation of any row-finite source-free $k$-graph. Next, we analyze the monic representations of $C^*$-algebras of finite $k$-graphs. We completely characterize these representations, generalizing results of Dutkay and Jorgensen cite{dutkay-jorgensen-monic} and Bezuglyi and Jorgensen cite{bezuglyi-jorgensen} for Cuntz and Cuntz-Krieger algebras respectively. We also describe a universal representation for non-negative monic representations of finite, strongly connected $k$-graphs. To conclude, we characterize the purely atomic and permutative representations of $k$-graph $C^*$-algebras, and discuss the relationship between these representations and the classes of representations introduced earlier.
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arvesons Dilation Problem to the n egative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.
We introduce the notion of additive units, or `addits, of a pointed Arveson system, and demonstrate their usefulness through several applications. By a pointed Arveson system we mean a spatial Arveson system with a fixed normalised reference unit. We show that the addits form a Hilbert space whose codimension-one subspace of `roots is isomorphic to the index space of the Arveson system, and that the addits generate the type I part of the Arveson system. Consequently the isomorphism class of the Hilbert space of addits is independent of the reference unit. The addits of a pointed inclusion system are shown to be in natural correspondence with the addits of the generated pointed product system. The theory of amalgamated products is developed using addits and roots, and an explicit formula for the amalgamation of pointed Arveson systems is given, providing a new proof of its independence of the particular reference units. (This independence justifies the terminology `spatial product of spatial Arveson systems). Finally a cluster construction for inclusion subsystems of an Arveson system is introduced and we demonstrate its correspondence with the action of the Cantor--Bendixson derivative in the context of the random closed set approach to product systems due to Tsirelson and Liebscher.
In this paper we define the notion of monic representation for the $C^*$-algebras of finite higher-rank graphs with no sources, and undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the co mmutative $C^*$-algebra of the continuous functions on the infinite path space, admit a cyclic vector. We link monic representations to the $Lambda$-semibranching representations previously studied by Farsi, Gillaspy, Kang, and Packer, and also provide a universal representation model for nonnegative monic representations.
We will define new constructions similar to the graph systems of correspondences described by Deaconu et al. We will use these to prove a version of Ionescus theorem for higher rank graphs. Afterwards we will examine the properties of these construct ions further and make contact with Yeends topological k-graphs and the tensor groupoid valued product systems of Fowler and Sims.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا