ﻻ يوجد ملخص باللغة العربية
In this paper, we analyse singular values of a large $ptimes n$ data matrix $mathbf{X}_n= (mathbf{x}_{n1},ldots,mathbf{x}_{nn})$ where the column $mathbf{x}_{nj}$s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $mathbf{Sigma}_{nj}=text{Cov}(mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.
Covariance matrix testing for high dimensional data is a fundamental problem. A large class of covariance test statistics based on certain averaged spectral statistics of the sample covariance matrix are known to obey central limit theorems under the
The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to
The concordance signature of a multivariate continuous distribution is the vector of concordance probabilities for margins of all orders; it underlies the bivariate and multivariate Kendalls tau measure of concordance. It is shown that every attainab
We consider the set Bp of parametric block correlation matrices with p blocks of various (and possibly different) sizes, whose diagonal blocks are compound symmetry (CS) correlation matrices and off-diagonal blocks are constant matrices. Such matrice
Consider two $p$-variate populations, not necessarily Gaussian, with covariance matrices $Sigma_1$ and $Sigma_2$, respectively, and let $S_1$ and $S_2$ be the sample covariances matrices from samples of the populations with degrees of freedom $T$ and