ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaussian distributions on Riemannian symmetric spaces: statistical learning with structured covariance matrices

118   0   0.0 ( 0 )
 نشر من قبل Salem Said
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools which are adapted to structured covariance matrices. The present paper proposes to meet this challenge by introducing a new class of probability distributions, Gaussian distributions of structured covariance matrices. These are Riemannian analogs of Gaussian distributions, which only sample from covariance matrices having a preassigned structure, such as complex, Toeplitz, or block-Toeplitz. The usefulness of these distributions stems from three features: (1) they are completely tractable, analytically or numerically, when dealing with large covariance matrices, (2) they provide a statistical foundation to the concept of structured Riemannian barycentre (i.e. Frechet or geometric mean), (3) they lead to efficient statistical learning algorithms, which realise, among others, density estimation and classification of structured covariance matrices. The paper starts from the observation that several spaces of structured covariance matrices, considered from a geometric point of view, are Riemannian symmetric spaces. Accordingly, it develops an original theory of Gaussian distributions on Riemannian symmetric spaces, of their statistical inference, and of their relationship to the concept of Riemannian barycentre. Then, it uses this original theory to give a detailed description of Gaussian distributions of three kinds of structured covariance matrices, complex, Toeplitz, and block-Toeplitz. Finally, it describes algorithms for density estimation and classification of structured covariance matrices, based on Gaussian distribution mixture models.

قيم البحث

اقرأ أيضاً

In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the high dimensional spiked sample covariance matrices, in the supercritical case when a reliable detection of spikes is possible. Especially, we derive th e joint distribution of the extreme eigenvalues and the generalized components of the associated eigenvectors, i.e., the projections of the eigenvectors onto arbitrary given direction, assuming that the dimension and sample size are comparably large. In general, the joint distribution is given in terms of linear combinations of finitely many Gaussian and Chi-square variables, with parameters depending on the projection direction and the spikes. Our assumption on the spikes is fully general. First, the strengths of spikes are only required to be slightly above the critical threshold and no upper bound on the strengths is needed. Second, multiple spikes, i.e., spikes with the same strength, are allowed. Third, no structural assumption is imposed on the spikes. Thanks to the general setting, we can then apply the results to various high dimensional statistical hypothesis testing problems involving both the eigenvalues and eigenvectors. Specifically, we propose accurate and powerful statistics to conduct hypothesis testing on the principal components. These statistics are data-dependent and adaptive to the underlying true spikes. Numerical simulations also confirm the accuracy and powerfulness of our proposed statistics and illustrate significantly better performance compared to the existing methods in the literature. Especially, our methods are accurate and powerful even when either the spikes are small or the dimension is large.
The asymptotic variance of the maximum likelihood estimate is proved to decrease when the maximization is restricted to a subspace that contains the true parameter value. Maximum likelihood estimation allows a systematic fitting of covariance models to the sample, which is important in data assimilation. The hierarchical maximum likelihood approach is applied to the spectral diagonal covariance model with different parameterizations of eigenvalue decay, and to the sparse inverse covariance model with specified parameter values on different sets of nonzero entries. It is shown computationally that using smaller sets of parameters can decrease the sampling noise in high dimension substantially.
We propose and analyze a new estimator of the covariance matrix that admits strong theoretical guarantees under weak assumptions on the underlying distribution, such as existence of moments of only low order. While estimation of covariance matrices c orresponding to sub-Gaussian distributions is well-understood, much less in known in the case of heavy-tailed data. As K. Balasubramanian and M. Yuan write, data from real-world experiments oftentimes tend to be corrupted with outliers and/or exhibit heavy tails. In such cases, it is not clear that those covariance matrix estimators .. remain optimal and ..what are the other possible strategies to deal with heavy tailed distributions warrant further studies. We make a step towards answering this question and prove tight deviation inequalities for the proposed estimator that depend only on the parameters controlling the intrinsic dimension associated to the covariance matrix (as opposed to the dimension of the ambient space); in particular, our results are applicable in the case of high-dimensional observations.
Let $mathbf{X}_n=(x_{ij})$ be a $k times n$ data matrix with complex-valued, independent and standardized entries satisfying a Lindeberg-type moment condition. We consider simultaneously $R$ sample covariance matrices $mathbf{B}_{nr}=frac1n mathbf{Q} _r mathbf{X}_n mathbf{X}_n^*mathbf{Q}_r^top,~1le rle R$, where the $mathbf{Q}_{r}$s are nonrandom real matrices with common dimensions $ptimes k~(kgeq p)$. Assuming that both the dimension $p$ and the sample size $n$ grow to infinity, the limiting distributions of the eigenvalues of the matrices ${mathbf{B}_{nr}}$ are identified, and as the main result of the paper, we establish a joint central limit theorem for linear spectral statistics of the $R$ matrices ${mathbf{B}_{nr}}$. Next, this new CLT is applied to the problem of testing a high dimensional white noise in time series modelling. In experiments the derived test has a controlled size and is significantly faster than the classical permutation test, though it does have lower power. This application highlights the necessity of such joint CLT in the presence of several dependent sample covariance matrices. In contrast, all the existing works on CLT for linear spectral statistics of large sample covariance matrices deal with a single sample covariance matrix ($R=1$).
Robust estimators of large covariance matrices are considered, comprising regularized (linear shrinkage) modifications of Maronnas classical M-estimators. These estimators provide robustness to outliers, while simultaneously being well-defined when t he number of samples does not exceed the number of variables. By applying tools from random matrix theory, we characterize the asymptotic performance of such estimators when the numbers of samples and variables grow large together. In particular, our results show that, when outliers are absent, many estimators of the regularized-Maronna type share the same asymptotic performance, and for these estimators we present a data-driven method for choosing the asymptotically optimal regularization parameter with respect to a quadratic loss. Robustness in the presence of outliers is then studied: in the non-regularized case, a large-dimensional robustness metric is proposed, and explicitly computed for two particular types of estimators, exhibiting interesting differences depending on the underlying contamination model. The impact of outliers in regularized estimators is then studied, with interesting differences with respect to the non-regularized case, leading to new practical insights on the choice of particular estimators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا