ﻻ يوجد ملخص باللغة العربية
Consider two $p$-variate populations, not necessarily Gaussian, with covariance matrices $Sigma_1$ and $Sigma_2$, respectively, and let $S_1$ and $S_2$ be the sample covariances matrices from samples of the populations with degrees of freedom $T$ and $n$, respectively. When the difference $Delta$ between $Sigma_1$ and $Sigma_2$ is of small rank compared to $p,T$ and $n$, the Fisher matrix $F=S_2^{-1}S_1$ is called a {em spiked Fisher matrix}. When $p,T$ and $n$ grow to infinity proportionally, we establish a phase transition for the extreme eigenvalues of $F$: when the eigenvalues of $Delta$ ({em spikes}) are above (or under) a critical value, the associated extreme eigenvalues of the Fisher matrix will converge to some point outside the support of the global limit (LSD) of other eigenvalues; otherwise, they will converge to the edge points of the LSD. Furthermore, we derive central limit theorems for these extreme eigenvalues of the spiked Fisher matrix. The limiting distributions are found to be Gaussian if and only if the corresponding population spike eigenvalues in $Delta$ are {em simple}. Numerical examples are provided to demonstrate the finite sample performance of the results. In addition to classical applications of a Fisher matrix in high-dimensional data analysis, we propose a new method for the detection of signals allowing an arbitrary covariance structure of the noise. Simulation experiments are conducted to illustrate the performance of this detector.
We consider general high-dimensional spiked sample covariance models and show that their leading sample spiked eigenvalues and their linear spectral statistics are asymptotically independent when the sample size and dimension are proportional to each
We study the asymptotic distributions of the spiked eigenvalues and the largest nonspiked eigenvalue of the sample covariance matrix under a general covariance matrix model with divergent spiked eigenvalues, while the other eigenvalues are bounded bu
Let $bY =bR+bX$ be an $Mtimes N$ matrix, where $bR$ is a rectangular diagonal matrix and $bX$ consists of $i.i.d.$ entries. This is a signal-plus-noise type model. Its signal matrix could be full rank, which is rarely studied in literature compared w
Sample correlation matrices are employed ubiquitously in statistics. However, quite surprisingly, little is known about their asymptotic spectral properties for high-dimensional data, particularly beyond the case of null models for which the data is
Let $mathbf{X}_n=(x_{ij})$ be a $k times n$ data matrix with complex-valued, independent and standardized entries satisfying a Lindeberg-type moment condition. We consider simultaneously $R$ sample covariance matrices $mathbf{B}_{nr}=frac1n mathbf{Q}