ﻻ يوجد ملخص باللغة العربية
Nematicity is ubiquitous in electronic phases of high transition temperature superconductors, particularly in iron-based superconductors (IBSCs). Order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unclear. We use linear dichroism (LD) in low-temperature laser-photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to the structural domains that have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with mesoscopic wavelength. The analysis reveals that the nematic order has an extremely long coherence length, more than 1000 times longer than the unit cell. Our direct visualization of electronic spatial variation uncovers a new fundamental aspect of quantum liquid crystalline states of correlated electrons in IBSCs.
Nowadays superconductors serve in numerous applications, from high-field magnets to ultra-sensitive detectors of radiation. Mesoscopic superconducting devices, i.e. those with nanoscale dimensions, are in a special position as they are easily driven
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges onl
We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperatu
The possibility of p-wave pairing in superconductors has been proposed more than five decades ago, but has not yet been convincingly demonstrated. One difficulty is that some p-wave states are thermodynamically indistinguishable from s-wave, while ot
Magnetic impurities inserted in a $s$-wave superconductor give rise to spin-polarized in-gap states called Shiba states. We study the back-action of these induced states on the dynamics of the classical moments. We show that the Shiba state pertains