ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoscopic conductance fluctuations in InAs nanowire-based SNS junctions

160   0   0.0 ( 0 )
 نشر من قبل Thomas Jespersen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a systematic experimental study of mesoscopic conductance fluctuations in superconductor/normal/superconductor (SNS) devices Nb/InAs-nanowire/Nb. These fluctuations far exceed their value in the normal state and strongly depend on temperature even in the low-temperature regime. This dependence is attributed to high sensitivity of perfectly conducting channels to dephasing and the SNS fluctuations thus provide a sensitive probe of dephasing in a regime where normal transport fails to detect it. Further, the conductance fluctuations are strongly non-linear in bias voltage and reveal sub-gap structure. The experimental findings are qualitatively explained in terms of multiple Andreev reflections in chaotic quantum dots with imperfect contacts.



قيم البحث

اقرأ أيضاً

Current noise is measured with a SQUID in low impedance and transparent Nb-Al-Nb j unctions of length comparable to the phase breaking length and much longer than the thermal length. The shot noise amplitude is compared with theoretical predictions o f doubled shot noise in diffusive normal/superconductor (NS) junctions due to the Andreev reflections. We discuss the heat dissipation away from the normal part through the NS interfaces. A weak applied magnetic field reduces the amplitude of the 1/f noise by a factor of two, showing that even far from equilibrium the sample is in the mesoscopic regime.
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
The Josephson effect is a fundamental quantum phenomenon consisting in the appearance of a dissipationless supercurrent in a weak link between two superconducting (S) electrodes. While the mechanism leading to the Josephson effect is quite general, i .e., Andreev reflections at the interface between the S electrodes and the weak link, the precise physical details and topology of the junction drastically modify the properties of the supercurrent. Specifically, a strong enhancement of the critical supercurrent $I_C$ is expected to occur when the topology of the junction allows the emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be ascribed to any known conventional phenomenon existing in Josephson junctions including, for instance, Fraunhofer-like diffraction or a $pi$-state behavior. We also investigate an unconventional model related to inhomogenous Zeeman field caused by magnetic focusing, and note that it can not account for the observed behaviour. Finally, we consider these results in the context of topological superconductivity, and show that the observed $I_C$ enhancement is compatible with a magnetic field-induced topological transition of the junction.
We demonstrate an original method -- based on controlled oxidation -- to create high-quality tunnel junctions between superconducting Al reservoirs and InAs semiconductor nanowires. We show clean tunnel characteristics with a current suppression by o ver $4$ orders of magnitude for a junction bias well below the Al gap $Delta_0 approx 200,mu {rm eV}$. The experimental data are in close agreement with the BCS theoretical expectations of a superconducting tunnel junction. The studied devices combine small-scale tunnel contacts working as thermometers as well as larger electrodes that provide a proof-of-principle active {em cooling} of the electron distribution in the nanowire. A peak refrigeration of about $delta T = 10,{rm mK}$ is achieved at a bath temperature $T_{bath}approx250-350,{rm mK}$ in our prototype devices. This method opens important perspectives for the investigation of thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration.
169 - M. Houzet , M. A. Skvortsov 2007
We study mesoscopic fluctuations and weak localization correction to the supercurrent in Josephson junctions with coherent diffusive electron dynamics in the normal part. Two kinds of junctions are considered: a chaotic dot coupled to superconductors by tunnel barriers and a diffusive junction with transparent normal--superconducting interfaces. The amplitude of current fluctuations and the weak localization correction to the average current are calculated as functions of the ratio between the superconducting gap and the electron dwell energy, temperature, and superconducting phase difference across the junction. Technically, fluctuations on top of the spatially inhomogeneous proximity effect in the normal region are described by the replicated version of the sigma-model. For the case of diffusive junctions with transparent interfaces, the magnitude of mesoscopic fluctuations of the critical current appears to be nearly 3 times larger than the prediction of the previous theory which did not take the proximity effect into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا