ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical torques from Shiba states in $s$-wave superconductors

96   0   0.0 ( 0 )
 نشر من قبل Archana Mishra
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic impurities inserted in a $s$-wave superconductor give rise to spin-polarized in-gap states called Shiba states. We study the back-action of these induced states on the dynamics of the classical moments. We show that the Shiba state pertains to both reactive and dissipative torques acting on the precessing classical spin that can be detected through ferromagnetic resonance measurements. Moreover, we highlight the influence of the bulk states as well as the effect of the finite linewidth of the Shiba state on the magnetization dynamics. Finally, we demonstrate that the torques are a direct measure of the even and odd frequency triplet pairings generated by the dynamics of the magnetic impurity. Our approach offers non-invasive alternative to the STM techniques used to probe the Shiba states.



قيم البحث

اقرأ أيضاً

Theoretical descriptions of Yu-Shiba-Rusinov (YSR) states induced by magnetic impurities inside the gap of a superconductor typically rely on a classical spin model or are restricted to spin-1/2 quantum spins. These models fail to account for importa nt aspects of YSR states induced by transition-metal impurities, including the effects of higher quantum spins coupled to several conduction-electron channels, crystal or ligand-field effects, and magnetic anisotropy. We introduce and explore a zero-bandwidth model, which incorporates these aspects, is readily solved numerically, and analytically tractable in several limiting cases. The principal simplification of the model is to neglect Kondo renormalizations of the exchange couplings between impurity spin and conduction electrons. Nevertheless, we find excellent correspondence in those cases, in which we can compare our results to existing numerical-renormalization-group calculations. We apply the model to obtain and understand phase diagrams as a function of pairing strength and magnetic anisotropy as well as subgap excitation spectra. The single-channel case is most relevant for transition-metal impurities embedded into metallic coordination complexes on superconducting substrates, while the multi-channel case models transition-metal adatoms.
When magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity1. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov stat es, appear inside the superconducting gap2-4. The search for Yu-Shiba-Rusinov states in different materials is intense, as they can be used as building blocks to promote Majorana modes5 suitable for topological quantum computing6. Here we report the first realization of Yu-Shiba-Rusinov states in graphene, a non-superconducting 2D material, and without the participation of magnetic atoms. We induce superconductivity in graphene by proximity effect7-9 brought by adsorbing nanometer scale superconducting Pb islands. Using scanning tunneling microscopy and spectroscopy we measure the superconducting proximity gap in graphene and we visualize Yu-Shiba-Rusinov states in graphene grain boundaries. Our results reveal the very special nature of those Yu-Shiba-Rusinov states, which extends more than 20 nm away from the grain boundaries. These observations provide the long sought experimental confirmation that graphene grain boundaries host local magnetic moments10-14 and constitute the first observation of Yu-Shiba-Rusinov states in a chemically pure system.
NbSe$_2$ is a remarkable superconductor in which charge-density order coexists with pairing correlations at low temperatures. Here, we study the interplay of magnetic adatoms and their Yu-Shiba-Rusinov (YSR) bound states with the charge density order . Exploiting the incommensurate nature of the charge-density wave (CDW), our measurements provide a thorough picture of how the CDW affects both the energies and the wavefunctions of the YSR states. Key features of the dependence of the YSR states on adsorption site relative to the CDW are explained by model calculations. Several properties make NbSe$_2$ a promising substrate for realizing topological nanostructures. Our results will be important in designing such systems.
Photon-assisted tunneling frequently provides detailed information on the underlying charge-transfer process. In particular, the Tien-Gordon approach and its extensions predict that the sideband spacing in bias voltage is a direct fingerprint of the number of electrons transferred in a single tunneling event. Here, we analyze photon-assisted tunneling into subgap states in superconductors in the limit of small temperatures and bias voltages where tunneling is dominated by resonant Andreev processes and does not conform to the predictions of simple Tien-Gordon theory. Our analysis is based on a systematic Keldysh calculation of the subgap conductance and provides a detailed analytical understanding of photon-assisted tunneling into subgap states, in excellent agreement with a recent experiment. We focus on tunneling from superconducting electrodes and into Yu-Shiba-Rusinov states associated with magnetic impurities or adatoms, but we also explicitly extend our results to include normal-metal electrodes or other types of subgap states in superconductors. In particular, we argue that photon-assisted Andreev reflections provide a high-accuracy method to measure small, but nonzero energies of subgap states which can be important for distinguishing conventional subgap states from Majorana bound states.
Nematicity is ubiquitous in electronic phases of high transition temperature superconductors, particularly in iron-based superconductors (IBSCs). Order parameter that characterizes the nematic phase has been investigated in momentum space, but its re al-space arrangement remains largely unclear. We use linear dichroism (LD) in low-temperature laser-photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe2(As0.87P0.13)2. In contrast to the structural domains that have atomic-scale domain walls, the LD patterns in both materials show peculiar sinusoidal waves of electronic nematicity with mesoscopic wavelength. The analysis reveals that the nematic order has an extremely long coherence length, more than 1000 times longer than the unit cell. Our direct visualization of electronic spatial variation uncovers a new fundamental aspect of quantum liquid crystalline states of correlated electrons in IBSCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا