ﻻ يوجد ملخص باللغة العربية
After a decade of research, we developed a prototype device and experimentally demonstrated that the direct phi q interaction could be memristive, as predicted by Chua in 1971. With a constant input current to avoid any parasitic inductor effect, our device meets three criteria for an ideal memristor: a single valued, nonlinear, continuously differentiable, and strictly monotonically increasing constitutive phi q curve, a pinched v i hysteresis loop, and a charge only dependent resistance. Our work represents a step forward in terms of experimentally verifying the memristive flux charge interaction but we have not reached the final because this prototype still suffers from two serious limitations: 1, a superficial but dominant inductor effect (behind which the above memristive fingerprints hide) due to its inductor-like core structure, and 2. bistability and dynamic sweep of a continuous resistance range. In this article, we also discuss how to make a fully functioning ideal memristor with multiple or an infinite number of stable states and no parasitic inductance, and give a number of suggestions, such as open structure, nanoscale size, magnetic materials with cubic anisotropy (or even isotropy), and sequential switching of the magnetic domains. Additionally, we respond to a recent challenge from arXiv.org that claims that our device is simply an inductor with memory since our device did not pass their designed capacitor-memristor circuit test. Contrary to their conjecture that an ideal memristor may not exist or may be a purely mathematical concept, we remain optimistic that researchers will discover an ideal memristor in nature or make one in the laboratory based on our current work.
A simple and unambiguous test has been recently suggested [J. Phys. D: Applied Physics, 52, 01LT01 (2018)] to check experimentally if a resistor with memory is indeed a memristor, namely a resistor whose resistance depends only on the charge that flo
In this reply, we will provide our impersonal, point-to-point responses to the major criticisms (in bold and underlined) in arXiv:1909.12464. Firstly, we will identify a number of (imperceptibly hidden) mistakes in the Comment in understanding/interp
Synaptic Sampling Machine (SSM) is a type of neural network model that considers biological unreliability of the synapses. We propose the circuit design of the SSM neural network which is realized through the memristive-CMOS crossbar structure with t
Memristors are continuously tunable resistors that emulate synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, but the mechanism remains controversial. Purely electronic memristors have recent
Non-volatile resistive switching, also known as memristor effect in two terminal devices, has emerged as one of the most important components in the ongoing development of high-density information storage, brain-inspired computing, and reconfigurable