ﻻ يوجد ملخص باللغة العربية
In this reply, we will provide our impersonal, point-to-point responses to the major criticisms (in bold and underlined) in arXiv:1909.12464. Firstly, we will identify a number of (imperceptibly hidden) mistakes in the Comment in understanding/interpreting our physical model. Secondly, we will use a 3rd-party experiment carried out in 1961 (plus other 3rd-party experiments thereafter) to further support our claim that our invented Phi memristor is memristive in spite of the existence of a parasitic inductor effect. Thirdly, we will analyse this parasitic effect mathematically, introduce our work-in-progress (in nanoscale) and point out that this parasitic inductor effect should not become a big worry since it can be completely removed in the macro-scale devices and safely neglected in the nano-scale devices.
Wang et al. claim [J. Appl. Phys. 125, 054504 (2019)] that a current-carrying wire interacting with a magnetic core represents a memristor. Here, we demonstrate that this claim is false. We first show that such memristor discovery is based on incorre
Synaptic Sampling Machine (SSM) is a type of neural network model that considers biological unreliability of the synapses. We propose the circuit design of the SSM neural network which is realized through the memristive-CMOS crossbar structure with t
The superior density of passive analog-grade memristive crossbars may enable storing large synaptic weight matrices directly on specialized neuromorphic chips, thus avoiding costly off-chip communication. To ensure efficient use of such crossbars in
The search for a compatible application of memristor-CMOS logic gates has remained elusive, as the data density benefits are offset by slow switching speeds and resistive dissipation. Active microdisplays typically prioritize pixel density (and there
Memristors have recently received significant attention as ubiquitous device-level components for building a novel generation of computing systems. These devices have many promising features, such as non-volatility, low power consumption, high densit