ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-calibration and combined analysis of the CTA-LST prototype and the MAGIC telescopes

65   0   0.0 ( 0 )
 نشر من قبل Yoshiki Ohtani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory, which will consist of three kinds of telescopes of different sizes. Among those, the Large Size Telescope (LST) will be the most sensitive in the low energy range starting from 20 GeV. The prototype LST (LST-1) proposed for CTA was inaugurated in October 2018 in the northern hemisphere site, La Palma (Spain), and is currently in its commissioning phase. MAGIC is a system of two gamma-ray Cherenkov telescopes of the current generation, located approximately 100 m away from LST-1, that have been operating in stereoscopic mode since 2009. Since LST-1 and MAGIC can observe the same air shower events, we can compare the brightness of showers, estimated energies of gamma rays, and other parameters event by event, which can be used to cross-calibrate the telescopes. Ultimately, by performing combined analyses of the events triggering the three telescopes, we can reconstruct the shower geometry more accurately, leading to better energy and angular resolutions, and a better discrimination of the background showers initiated by cosmic rays. For that purpose, as part of the commissioning of LST-1, we performed joint observations of established gamma-ray sources with LST-1 and MAGIC. Also, we have developed Monte Carlo simulations for such joint observations and an analysis pipeline which finds event coincidence in the offline analysis based on their timestamps. In this work, we present the first detection of an astronomical source, the Crab Nebula, with combined observation of LST-1 and MAGIC. Moreover, we show results of the inter-telescope cross-calibration obtained using Crab Nebula data taken during joint observations with LST-1 and MAGIC.



قيم البحث

اقرأ أيضاً

98 - L. L. Ma 2010
The Large High Altitude Air Shower Observatory project is proposed to study high energy gamma ray astronomy ( 40 GeV-1 PeV ) and cosmic ray physics ( 20 TeV-1 EeV ). The wide field of view Cherenkov telescope array, as a component of the LHAASO proje ct, will be used to study energy spectrum and compositions of cosmic ray by measuring the total Cherenkov light generated by air showers and shower maximum depth. Two prototype telescopes have been in operation since 2008. The pointing accuracy of each telescope is crucial to the direction reconstruction of the primary particles. On the other hand the primary energy reconstruction relies on the shape of the Cherenkov image on the camera and the unrecorded photons due to the imperfect connections between photomultiplier tubes. UV bright stars are used as point-like objects to calibrate the pointing and to study the optical properties of the camera, the spot size and the fractions of unrecorded photons in the insensitive areas of the camera.
The Cherenkov Telescope Array (CTA) is the next generation of ground-based gamma-ray observatory. The observatory will consist of two arrays, one located in the southern hemisphere (Paranal,Chile) and the other in the northern hemisphere (Canary Isla nd, Spain), covering the whole sky in the range of observation. More than 100 telescopes are planned to be in operation for as long as 30 years, which motivated the development of a continuous condition monitoring of the individual telescopes. The main goal of the monitoring is to detect degradation and failures before critical damages occur. Two approaches are considered: the structure monitoring system, in which the Eigenfrequencies of the telescope and their damping rates are measured and monitored; and the drive monitoring, in which the power spectra of rotating components are measured during telescope movements. The structure monitoring concept system was applied to the prototype Medium Size telescope (MST) prototype of CTA in Berlin during late 2018 and in 2019, and the first results are presented here. The system showed reasonable stability during periods, in which the telescope structure was unchanged. The system was also capable to detect mechanical changes, e.g. varying tension in the steel ropes of the camera support structure. The successful implementation of the structure monitoring system supports the decision of implementing the system in all future MSTs.
107 - Juergen Baehr 2012
We present here the status of the medium size prototype for the Cherenkov Telescope Array. The main reasons to build the prototype are the test of the steel structure, the training of various mounting operations, the test of the drive system and the test of the safety system. The essential difference between the medium size telescope prototype and a fully instrumented are that the camera is not instrumented and only a part of the mounted mirrors are optical mirrors. Insofar no high energy gamma rays can be detected by the prototype telescope. The prototype will be setup in autumn 2012 in Berlin.
Gammapy is a Python package for high-level gamma-ray data analysis built on Numpy, Scipy and Astropy. It enables us to analyze gamma-ray data and to create sky images, spectra and lightcurves, from event lists and instrument response information, and to determine the position, morphology and spectra of gamma-ray sources. So far Gammapy has mostly been used to analyze data from H.E.S.S. and Fermi-LAT, and is now being used for the simulation and analysis of observations from the Cherenkov Telescope Array (CTA). We have proposed Gammapy as a prototype for the CTA science tools. This contribution gives an overview of the Gammapy package and project and shows an analysis application example with simulated CTA data.
MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we present a dedicated Moon-adapted analysis and characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor $sim$1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the telescopes cameras. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the duty cycle can be doubled, suppressing the need to stop observations around full Moon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا