ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the MAGIC telescopes under moonlight

147   0   0.0 ( 0 )
 نشر من قبل Daniel Guberman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we present a dedicated Moon-adapted analysis and characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor $sim$1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the telescopes cameras. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the duty cycle can be doubled, suppressing the need to stop observations around full Moon.

قيم البحث

اقرأ أيضاً

MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ~1.7 (Reduced HV settings) with respect to standard settings (Nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for Nominal HV, Reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ~18%, under dark nights only, to up to ~40% in total with only moderate performance degradation.
The MAGIC gamma-ray observatory has recently been upgraded by a second Cherenkov telescope at a distance of 85 m from the first one. Simultaneous observation of air showers with the two MAGIC telescopes (stereoscopic mode) will improve the reconstruc tion of the shower axis and solve the ambiguity in the impact point occurring in single-telescope mode. Also, the stereo observation will result in a better angular resolution, energy estimation and cosmic-ray background rejection. It is expected that the sensitivity of MAGIC improves significantly over the full energy range (60 GeV - 20 TeV). Here, we present the performance estimated from Monte Carlo simulations.
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, s o IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80% Moon illumination), resulting in 30% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727+502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations.
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the sigma of a 2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for the energy spectrum power-law slope.
In 2007 a prototype of a new analog Sum-Trigger was installed in the MAGIC I telescope, which lowered the trigger threshold from 55 GeV to 25 GeV and led to the detection of pulsed gamma radiation from the Crab pulsar. To eliminate the need for manua l tuning and maintenance demanded by that first prototype, a new setup with fully automatic calibration was designed recently. The key element of the new circuit is a novel, continuously variable analog delay line that enables the temporal equalization of the signals from the camera photo sensors, which is crucial for the efficient detection of low-energy showers. A further improvement is the much larger trigger area consisting of a fully revised configuration of overlapping summing patches. The new system will be installed on both telescopes, MAGIC I and II, enabling stereo observation in Sum-Trigger mode. This will significantly improve the sensitivity in the very low energy regime of 20 to 100 GeV, which is essential in particular for detailed pulsar studies, as well as the observation of high-redshift AGNs and distant GRB events. Here we like to present the results of functionality tests of a fully working prototype and the basic design of the final system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا