ﻻ يوجد ملخص باللغة العربية
We present formulae for the moments of the ruin time in a Levy risk model. From these we derive the asymptotic behaviour of the moments of the ruin time, as the initial capital tends to infinity. In the perturbed Cramer-Lundberg model with phase-type distributed claims, we explicitely compute the first two moments of the ruin time in terms of roots and derivatives of the corresponding Laplace exponent. In the special case of exponential claims we provide explicit formulae for the first two moments of the ruin time in terms of the model parameters. All our considerations distinguish between the profitable and the unprofitable setting.
Based on a discrete version of the Pollaczeck-Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber-Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then
We give asymptotic analysis for probability of absorbtion $mathsf{P}(tau_0le T)$ on the interval $[0,T]$, where $ tau_0=inf{t:X_t=0}$ and $X_t$ is a nonnegative diffusion process relative to Brownian motion $B_t$, dX_t&=mu X_tdt+sigma X^gamma_tdB_t.
In this paper we study the moderate deviations for the magnetization of critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-critical model by using Stein method. By direct and simple arguments based on Laplace method,
We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains $C_i$ ($i=1,2,dots$) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proporti
In this paper we give few expressions and asymptotics of ruin probabilities for a Markov modulated risk process for various regimes of a time horizon, initial reserves and a claim size distribution. We also consider f