ﻻ يوجد ملخص باللغة العربية
Based on a discrete version of the Pollaczeck-Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber-Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains $C_i$ ($i=1,2,dots$) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proporti
This paper develops asymptotics and approximations for ruin probabilities in a multivariate risk setting. We consider a model in which the individual reserve processes are driven by a common Markovian environmental process. We subsequently consider a
We present formulae for the moments of the ruin time in a Levy risk model. From these we derive the asymptotic behaviour of the moments of the ruin time, as the initial capital tends to infinity. In the perturbed Cramer-Lundberg model with phase-type
In this paper we give few expressions and asymptotics of ruin probabilities for a Markov modulated risk process for various regimes of a time horizon, initial reserves and a claim size distribution. We also consider f
We give asymptotic analysis for probability of absorbtion $mathsf{P}(tau_0le T)$ on the interval $[0,T]$, where $ tau_0=inf{t:X_t=0}$ and $X_t$ is a nonnegative diffusion process relative to Brownian motion $B_t$, dX_t&=mu X_tdt+sigma X^gamma_tdB_t.