ترغب بنشر مسار تعليمي؟ اضغط هنا

A dual risk model with additive and proportional gains: ruin probability and dividends

81   0   0.0 ( 0 )
 نشر من قبل Zbigniew Palmowski
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a dual risk model with constant expense rate and i.i.d. exponentially distributed gains $C_i$ ($i=1,2,dots$) that arrive according to a renewal process with general interarrival times. We add to this classical dual risk model the proportional gain feature, that is, if the surplus process just before the $i$th arrival is at level $u$, then for $a>0$ the capital jumps up to the level $(1+a)u+C_i$. The ruin probability and the distribution of the time to ruin are determined. We furthermore identify the value of discounted cumulative dividend payments, for the case of a Poisson arrival process of proportional gains. In the dividend calculations, we also consider a random perturbation of our basic risk process modeled by an independent Brownian motion with drift.



قيم البحث

اقرأ أيضاً

Based on a discrete version of the Pollaczeck-Khinchine formula, a general method to calculate the ultimate ruin probability in the Gerber-Dickson risk model is provided when claims follow a negative binomial mixture distribution. The result is then extended for claims with a mixed Poisson distribution. The formula obtained allows for some approximation procedures. Several examples are provided along with the numerical evidence of the accuracy of the approximations.
We revisit the dividend payment problem in the dual model of Avanzi et al. ([2], [1], and [3]). Using the fluctuation theory of spectrally positive L{e}vy processes, we give a short exposition in which we show the optimality of barrier strategies for all such L{e}vy processes. Moreover, we characterize the optimal barrier using the functional inverse of a scale function. We also consider the capital injection problem of [3] and show that its value function has a very similar form to the one in which the horizon is the time of ruin.
We analyze the optimal dividend payment problem in the dual model under constant transaction costs. We show, for a general spectrally positive L{e}vy process, an optimal strategy is given by a $(c_1,c_2)$-policy that brings the surplus process down t o $c_1$ whenever it reaches or exceeds $c_2$ for some $0 leq c_1 < c_2$. The value function is succinctly expressed in terms of the scale function. A series of numerical examples are provided to confirm the analytical results and to demonstrate the convergence to the no-transaction cost case, which was recently solved by Bayraktar et al. (2013).
241 - Zbigniew Palmowski 2021
In this paper we give few expressions and asymptotics of ruin probabilities for a Markov modulated risk process for various regimes of a time horizon, initial reserves and a claim size distribution. We also consider f
This paper develops asymptotics and approximations for ruin probabilities in a multivariate risk setting. We consider a model in which the individual reserve processes are driven by a common Markovian environmental process. We subsequently consider a regime in which the claim arrival intensity and transition rates of the environmental process are jointly sped up, and one in which there is (with overwhelming probability) maximally one transition of the environmental process in the time interval considered. The approximations are extensively tested in a series of numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا