ﻻ يوجد ملخص باللغة العربية
We investigate emergent quantum dynamics of the tilted Ising chain in the regime of a weak transverse field. Within the leading order perturbation theory, the Hilbert space is fragmented into exponentially many decoupled sectors. We find that the sector made of isolated magnons is integrable with dynamics being governed by a constrained version of the XXZ spin Hamiltonian. As a consequence, when initiated in this sector, the Ising chain exhibits ballistic transport on unexpectedly long times scales. We quantitatively describe its rich phenomenology employing exact integrable techniques such as Generalized Hydrodynamics. Finally, we initiate studies of integrability-breaking magnon clusters whose leading-order transport is activated by scattering with surrounding isolated magnons.
The kagome lattice -- a two-dimensional (2D) arrangement of corner-sharing triangles -- is at the forefront of the search for exotic states generated by magnetic frustration. Such states have been observed experimentally for Heisenberg and planar spi
Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equili
We study low-energy excitations of one-dimensional Galilean-invariant models integrable by Bethe ansatz and characterized by nonsingular two-particle scattering phase shifts. We prove that the curvature of the excitation spectra is described by the r
The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior in the vicinity of quantum phase transitions (QPTs). It is now well understood for one-dimensional quantum matter. Higher-dimensional systems, however, remain a challenge
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially