ﻻ يوجد ملخص باللغة العربية
We study low-energy excitations of one-dimensional Galilean-invariant models integrable by Bethe ansatz and characterized by nonsingular two-particle scattering phase shifts. We prove that the curvature of the excitation spectra is described by the recently proposed phenomenological expression for the effective mass. Our results apply to such models as the repulsive Lieb-Liniger model and the hyperbolic Calogero-Sutherland model.
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially
We investigate emergent quantum dynamics of the tilted Ising chain in the regime of a weak transverse field. Within the leading order perturbation theory, the Hilbert space is fragmented into exponentially many decoupled sectors. We find that the sec
We calculate correlation functions of exactly-solvable one-dimensional flat-band models by utilizing the molecular-orbital representation. The models considered in this paper have a gapped ground state with flat-band being fully occupied, even in the
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the t
We consider $N$-particle generalizations of $eta$-paring states in a chain of $N$-component fermions and show that these states are exact (high-energy) eigenstates of an extended SU($N$) Hubbard model. We compute the singlet correlation function of t