ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Personalized Dialogue via Multi-Task Meta-Learning

133   0   0.0 ( 0 )
 نشر من قبل Jing Yang Lee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional approaches to personalized dialogue generation typically require a large corpus, as well as predefined persona information. However, in a real-world setting, neither a large corpus of training data nor persona information are readily available. To address these practical limitations, we propose a novel multi-task meta-learning approach which involves training a model to adapt to new personas without relying on a large corpus, or on any predefined persona information. Instead, the model is tasked with generating personalized responses based on only the dialogue context. Unlike prior work, our approach leverages on the provided persona information only during training via the introduction of an auxiliary persona reconstruction task. In this paper, we introduce 2 frameworks that adopt the proposed multi-task meta-learning approach: the Multi-Task Meta-Learning (MTML) framework, and the Alternating Multi-Task Meta-Learning (AMTML) framework. Experimental results show that utilizing MTML and AMTML results in dialogue responses with greater persona consistency.

قيم البحث

اقرأ أيضاً

Controlling the model to generate texts of different categories is a challenging task that is getting more and more attention. Recently, generative adversarial net (GAN) has shown promising results in category text generation. However, the texts gene rated by GANs usually suffer from the problems of mode collapse and training instability. To avoid the above problems, we propose a novel model named category-aware variational recurrent neural network (CatVRNN), which is inspired by multi-task learning. In our model, generation and classification are trained simultaneously, aiming at generating texts of different categories. Moreover, the use of multi-task learning can improve the quality of generated texts, when the classification task is appropriate. And we propose a function to initialize the hidden state of CatVRNN to force model to generate texts of a specific category. Experimental results on three datasets demonstrate that our model can do better than several state-of-the-art text generation methods based GAN in the category accuracy and quality of generated texts.
98 - Yifan Gao , Piji Li , Wei Bi 2020
Sentence function is an important linguistic feature indicating the communicative purpose in uttering a sentence. Incorporating sentence functions into conversations has shown improvements in the quality of generated responses. However, the number of utterances for different types of fine-grained sentence functions is extremely imbalanced. Besides a small number of high-resource sentence functions, a large portion of sentence functions is infrequent. Consequently, dialogue generation conditioned on these infrequent sentence functions suffers from data deficiency. In this paper, we investigate a structured meta-learning (SML) approach for dialogue generation on infrequent sentence functions. We treat dialogue generation conditioned on different sentence functions as separate tasks, and apply model-agnostic meta-learning to high-resource sentence functions data. Furthermore, SML enhances meta-learning effectiveness by promoting knowledge customization among different sentence functions but simultaneously preserving knowledge generalization for similar sentence functions. Experimental results demonstrate that SML not only improves the informativeness and relevance of generated responses, but also can generate responses consistent with the target sentence functions.
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-orie nted dialogue systems with 37 domains to be learned continuously in four settings, such as intent recognition, state tracking, natural language generation, and end-to-end. Moreover, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform comparably well but they both achieve inferior performance to the multi-task learning baseline, in where all the data are shown at once, showing that continual learning in task-oriented dialogue systems is a challenging task. Furthermore, we reveal several trade-offs between different continual learning methods in term of parameter usage and memory size, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released together with several baselines to promote more research in this direction.
Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc. While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be h ighly scarce and expensive. In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks where the training objectives are given naturally according to the nature of the utterance and the structure of the multi-role conversation. Meanwhile, in order to locate essential information for dialogue summarization/extraction, the pretraining process enables external knowledge integration. The proposed fine-tuned pretraining mechanism is comprehensively evaluated via three different dialogue datasets along with a number of downstream dialogue-mining tasks. Result shows that the proposed pretraining mechanism significantly contributes to all the downstream tasks without discrimination to different encoders.
In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, w hich allows us to plug-and-play pre-trained seq2seq models, and jointly learn dialogue state tracking and dialogue response generation. Unlike previous approaches, which use a copy mechanism to carryover the old dialogue states to the new one, we introduce Levenshtein belief spans (Lev), that allows efficient dialogue state tracking with a minimal generation length. We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ. Extensive experiments demonstrate that: 1) our systems establish new state-of-the-art results on end-to-end response generation, 2) MinTL-based systems are more robust than baseline methods in the low resource setting, and they achieve competitive results with only 20% training data, and 3) Lev greatly improves the inference efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا