ترغب بنشر مسار تعليمي؟ اضغط هنا

Continual Learning in Task-Oriented Dialogue Systems

179   0   0.0 ( 0 )
 نشر من قبل Andrea Madotto Mr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in four settings, such as intent recognition, state tracking, natural language generation, and end-to-end. Moreover, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform comparably well but they both achieve inferior performance to the multi-task learning baseline, in where all the data are shown at once, showing that continual learning in task-oriented dialogue systems is a challenging task. Furthermore, we reveal several trade-offs between different continual learning methods in term of parameter usage and memory size, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released together with several baselines to promote more research in this direction.

قيم البحث

اقرأ أيضاً

In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, w hich allows us to plug-and-play pre-trained seq2seq models, and jointly learn dialogue state tracking and dialogue response generation. Unlike previous approaches, which use a copy mechanism to carryover the old dialogue states to the new one, we introduce Levenshtein belief spans (Lev), that allows efficient dialogue state tracking with a minimal generation length. We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ. Extensive experiments demonstrate that: 1) our systems establish new state-of-the-art results on end-to-end response generation, 2) MinTL-based systems are more robust than baseline methods in the low resource setting, and they achieve competitive results with only 20% training data, and 3) Lev greatly improves the inference efficiency.
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local uttera nces, but also the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose a novel Memory-Augmented Dialogue management model (MAD) which employs a memory controller and two additional memory structures, i.e., a slot-value memory and an external memory. The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (for instance, cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks through storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.
Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized s ystems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via fine-tuning. We evaluate our solution in five task-oriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.
Over-dependence on domain ontology and lack of knowledge sharing across domains are two practical and yet less studied problems of dialogue state tracking. Existing approaches generally fall short in tracking unknown slot values during inference and often have difficulties in adapting to new domains. In this paper, we propose a Transferable Dialogue State Generator (TRADE) that generates dialogue states from utterances using a copy mechanism, facilitating knowledge transfer when predicting (domain, slot, value) triplets not encountered during training. Our model is composed of an utterance encoder, a slot gate, and a state generator, which are shared across domains. Empirical results demonstrate that TRADE achieves state-of-the-art joint goal accuracy of 48.62% for the five domains of MultiWOZ, a human-human dialogue dataset. In addition, we show its transferring ability by simulating zero-shot and few-shot dialogue state tracking for unseen domains. TRADE achieves 60.58% joint goal accuracy in one of the zero-shot domains, and is able to adapt to few-shot cases without forgetting already trained domains.
This ability to learn consecutive tasks without forgetting how to perform previously trained problems is essential for developing an online dialogue system. This paper proposes an effective continual learning for the task-oriented dialogue system wit h iterative network pruning, expanding and masking (TPEM), which preserves performance on previously encountered tasks while accelerating learning progress on subsequent tasks. Specifically, TPEM (i) leverages network pruning to keep the knowledge for old tasks, (ii) adopts network expanding to create free weights for new tasks, and (iii) introduces task-specific network masking to alleviate the negative impact of fixed weights of old tasks on new tasks. We conduct extensive experiments on seven different tasks from three benchmark datasets and show empirically that TPEM leads to significantly improved results over the strong competitors. For reproducibility, we submit the code and data at: https://github.com/siat-nlp/TPEM

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا