ﻻ يوجد ملخص باللغة العربية
More recently, an Approximate SVD Based on Qatar Riyal (QR) Decomposition (CSVD-QR) method for matrix complete problem is presented, whose computational complexity is $O(r^2(m+n))$, which is mainly due to that $r$ is far less than $min{m,n}$, where $r$ represents the largest number of singular values of matrix $X$. What is particularly interesting is that after replacing the nuclear norm with the $L_{2,1}$ norm proposed based on this decomposition, as the upper bound of the nuclear norm, when the intermediate matrix $D$ in its decomposition is close to the diagonal matrix, it will converge to the nuclear norm, and is exactly equal, when the $D$ matrix is equal to the diagonal matrix, to the nuclear norm, which ingeniously avoids the calculation of the singular value of the matrix. To the best of our knowledge, there is no literature to generalize and apply it to solve tensor complete problems. Inspired by this, in this paper we propose a class of tensor minimization model based on $L_{2,1}$ norm and CSVD-QR method for the tensor complete problem, which is convex and therefore has a global minimum solution.
In this paper, we consider the tensor completion problem, which has many researchers in the machine learning particularly concerned. Our fast and precise method is built on extending the $L_{2,1}$-norm minimization and Qatar Riyal decomposition (LNM-
Low-rank Tucker and CP tensor decompositions are powerful tools in data analytics. The widely used alternating least squares (ALS) method, which solves a sequence of over-determined least squares subproblems, is costly for large and sparse tensors. W
Some fast algorithms for computing the eigenvalues of a block companion matrix $A = U + XY^H$, where $Uin mathbb C^{ntimes n}$ is unitary block circulant and $X, Y inmathbb{C}^{n times k}$, have recently appeared in the literature. Most of these algo
Tensor completion refers to the task of estimating the missing data from an incomplete measurement or observation, which is a core problem frequently arising from the areas of big data analysis, computer vision, and network engineering. Due to the mu
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c