ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the tensor completion problem, which has many researchers in the machine learning particularly concerned. Our fast and precise method is built on extending the $L_{2,1}$-norm minimization and Qatar Riyal decomposition (LNM-QR) method for matrix completions to tensor completions, and is different from the popular tensor completion methods using the tensor singular value decomposition (t-SVD). In terms of shortening the computing time, t-SVD is replaced with the method computing an approximate t-SVD based on Qatar Riyal decomposition (CTSVD-QR), which can be used to compute the largest $r left(r>0 right)$ singular values (tubes) and their associated singular vectors (of tubes) iteratively. We, in addition, use the tensor $L_{2,1}$-norm instead of the tensor nuclear norm to minimize our model on account of it is easy to optimize. Then in terms of improving accuracy, ADMM, a gradient-search-based method, plays a crucial part in our method. Numerical experimental results show that our method is faster than those state-of-the-art algorithms and have excellent accuracy.
More recently, an Approximate SVD Based on Qatar Riyal (QR) Decomposition (CSVD-QR) method for matrix complete problem is presented, whose computational complexity is $O(r^2(m+n))$, which is mainly due to that $r$ is far less than $min{m,n}$, where $
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c
Tensor completion can estimate missing values of a high-order data from its partially observed entries. Recent works show that low rank tensor ring approximation is one of the most powerful tools to solve tensor completion problem. However, existing
Tensor decomposition is a popular technique for tensor completion, However most of the existing methods are based on linear or shallow model, when the data tensor becomes large and the observation data is very small, it is prone to over fitting and t
We consider a low-rank tensor completion (LRTC) problem which aims to recover a tensor from incomplete observations. LRTC plays an important role in many applications such as signal processing, computer vision, machine learning, and neuroscience. A w